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Problem 1

a) How many different arrangements are there for the letters in the word

ARRANGEMENT

b) How many of these arrangements have all the identical letters standing next
to each other? (Such as the arrangement AAMRREETNNG for example.)

c) How many of the arrangements in (a) have no A’s standing next to each
other?

Solution 1 a) There are 11!
2!2!2!2!1!1!1! = 11!

16 different arrangements for these let-
ters.

b) There are 7 different letters, which we can arrange in 7! ways. Now add the
double letters next to their twins to get all the arrangements where identical
letters are standing next to each other. So we have 7! such arrangements.

c) There are only two letters A. Let us count the number of arrangements where
the letters A do stand next to each other. This comes down to counting
the arrangements of ARRNGEMENT and then adding the other A next
to the first one. There are 10!

2!2!2!1!1!1!1! = 10!
8 ways to arrange the letters of

ARRNGEMENT .
The number of arrangements of ARRANGEMENT where the letters A do
not stand next to each other must now be equal to

11!
16 −

10!
8 .

Another way to solve this problem: first arrange the letters of RRNGEMENT ,
which can be done in 9!

2!2!2!1!1!1! = 9!
8 ways. Now consider the 10 spots before,

between and after these 9 letters. The letters A must occupy two different
spots, which can be chosen in

(
10
2

)
= 45 ways. So there are 45 · 9!

8 ways to
arrange the letters of ARRANGEMENT in such a way that the letters A
do not stand next to each other.

Notice that the two answers above are identical: 11!
16 −

10!
8 = 11·10· 9!

16−10· 9!
8 =

11·10
2 · 9!

8 − 10 · 9!
8 = 55 · 9!

8 − 10 · 9!
8 = 45 · 9!

8 .
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Problem 2

a) Prove the following set equality for sets A, B and C in a universe U

(A ∪B) ∩
(
(A ∩B) ∩ C

)
= (A ∪B)− C

You may use membership tables, the laws of set theory or element arguments.

b) Let X and Y be sets and let f : X → Y be a function. Let A and B be two
subsets of X. Prove that f(A ∩B) ⊆ f(A) ∩ f(B).

Solution 2 a) To solve this problem, both membership tables and the laws of
set theory will give a quick solution.

Using the laws of set theory:

(A ∪B) ∩
(
(A ∩B) ∩ C

)
= (A ∪B) ∩

(
(A ∩B) ∪ C

)
by DeMorgan’s Law

= (A ∪B) ∩
(
(A ∩B) ∪ C

)
by the Law of Double Complement

= (A ∪B) ∩
(
(A ∪B) ∪ C

)
by DeMorgan’s Law

=
(
(A ∪B) ∩ (A ∪B)

)
∪

(
(A ∪B) ∩ C

)
by the Distributive Law

= ∅ ∪
(
(A ∪B) ∩ C

)
by the Inverse Law

= (A ∪B) ∩ C by the Idempotent Law
= (A ∪B)− C

Using a membership table (or actually two, since it got too wide):

A B C A ∪B A B A ∩B (A ∩B) (A ∩B) ∩ C
(
(A ∩B) ∩ C

)
0 0 0 0 1 1 1 0 0 1
0 0 1 0 1 1 1 0 0 1
0 1 0 1 1 0 0 1 0 1
0 1 1 1 1 0 0 1 1 0
1 0 0 1 0 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0
1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 1 0
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A B C (A ∪B) ∩
(
(A ∩B) ∩ C

)
(A ∪B)− C

0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 1
1 1 1 0 0

Since the sets (A ∪ B) ∩
(
(A ∩B) ∩ C

)
and (A ∪ B) − C have the same

membership tables, they must be equal.

b) Let z ∈ f(A ∩B) be arbitrary. We will prove that z ∈ f(A) ∩ f(B).
As z ∈ f(A ∩ B), there must be an element x ∈ A ∩ B such that z = f(x).
As x ∈ A ∩ B, we see that x ∈ A and x ∈ B. As x ∈ A and z = f(x), we
find that z ∈ f(A). As x ∈ B and z = f(x), we find that z ∈ f(B). Since
z ∈ f(A) and z ∈ f(B), we may conclude that z ∈ f(A)∩f(B). Since z was
an arbitrary element of f(A∩B), this proves that f(A∩B) ⊆ f(A)∩ f(B).

Problem 3

a) Is the function f : Z→ Z given by f(x) = x2 + 2x + 1 injective? Prove your
answer.

b) Is the function given in (a) surjective? Prove your answer.

c) Give a restriction of the function in (a) that is injective.

Solution 3 a) This function is not injective, since f(0) = 1 and f(−2) =
(−2)2 + 2 · (−2) + 1 = 1.

b) This function is not surjective, since for all x ∈ Z we have

f(x) = x2 + 2x + 1 = (x + 1)2 ≥ 0.

So f will never assume any negative values, while its codomain does include
negative values.
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c) Take for example the restriction f |N of f to N. If x, y ∈ N with x 6= y, then
we have x < y or x > y. By swapping x and y if necessary, we may assume
that x < y. Now f |N(x) = x2 + 2x + 1 < y2 + 2y + 1 = f |N(y) since x and
y are non-negative. Hence f |N(x) 6= f |N(y). This proves that our restriction
f |N is injective.

Remark: you could also have solved this problem by taking a restriction to a
very small set. Restrict f to the set {3} for example. Since its domain has
only one point, this restricted function will automatically be injective.

Problem 4

a) Construct a finite state machine (with input and output alphabet {0, 1})
that recognises all strings that contain the string 10101 as a substring: the
output of your Finite State Machine should be 1 when the input string
contains 10101 as a substring, and 0 otherwise.

b) Give 6 different words in the language {11}{010}∗{3} ∪ {1, 22}{11}∗, where
the alphabet is {0, 1, 2, 3}. You should give at least one word that uses a
letter 3 and at least one word that uses a letter 2.

Solution 4 a) The Finite State Machine drawn in figure 1 recognises this lan-
guage. There are also other valid solutions possible.

Figure 1: This figure belongs to Solution 4a

b) There are many possible answers to this question. For example, take the
strings 113, 110103, 110100103, 1, 22, and 2211.
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Figure 2: This figure belongs to Problem 5(a)

Problem 5

a) Find a minimal spanning tree for the graph in Figure 2 using Prim’s algo-
rithm. Start with vertex a and write down in which order you add your
edges.

b) Study the graph in Figure 3 and determine whether or not is it planar. Prove
your answer.

c) Does the graph in Figure 3 have a Hamilton cycle? Prove your answer.

Figure 3: This figure belongs to Problem 5(b)
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Solution 5 a) We execute Prim’s algorithm, starting at vertex a.
For i = 1: P1 = {a}, N1 = {b, c, d, e, f, g, h}, T = ∅. Set e1 = {a, d}.
For i = 2: P1 = {a, d}, N1 = {b, c, e, f, g, h}, T = {{a, d}}. Set e2 = {d, h}.
For i = 3: P1 = {a, d, h}, N1 = {b, c, e, f, g}, T = {{a, d}, {d, h}}. Set
e3 = {h, e}. (There was another possible choice here, leading to another
tree!)
For i = 4: P1 = {a, d, h, e}, N1 = {b, c, f, g}, T = {{a, d}, {d, h}, {h, e}}.
Set e4 = {e, c}.
For i = 5: P1 = {a, d, h, e, c}, N1 = {b, f, g}, T = {{a, d}, {d, h}, {h, e}, {e, c}}.
Set e5 = {e, f}.
For i = 6: P1 = {a, d, h, e, c, f}, N1 = {b, g}, T = {{a, d}, {d, h}, {h, e}, {e, c}, {e, f}}.
Set e6 = {a, b}. (There was another possible choice here, leading to another
tree!)
For i = 7: P1 = {a, d, h, e, c, f, b}, N1 = {g}, T = {{a, d}, {d, h}, {h, e}, {e, c}, {e, f}, {a, b}}.
Set e6 = {b, g}.
Now T = {{a, d}, {d, h}, {h, e}, {e, c}, {e, f}, {a, b}, {b, g}}, which has weight
19.

Figure 4: This figure belongs to Solution 5a

b) This graph is planar. See Figure 5 for a planar embedding of this graph.

c) Figure 5 shows that our graph is bipartite, with 5 blue vertices and 3 red
vertices. A Hamilton cycle must always pass from a red vertex to a blue one,
and from a blue vertex to a red one. Since it must return to its starting
vertex, the cycle must consist of the same number of blue vertices as red
vertices. However, there are more blue than red vertices! Therefore, there
cannot be a Hamilton cycle in this graph. (In fact, there can’t even be a
Hamilton path.)
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Figure 5: This figure belongs to Solutions 5b and 5c

Problem 6

a) Give the three defining properties of a partial ordering relation. You may
give the names of these properties, or their definitions.

b) Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9} and define a relation R on S by setting

xRy ⇔ x|y.

Prove that R is a partial ordering relation. (Recall: "x|y" is a notation for
the statement "x divides y", or " y

x
∈ Z" in other words.)

c) For the Hasse diagram in figure 6, identify all minimal, maximal, least and
greatest elements (if they exist).

d) Prove that a partial ordering relation cannot have two distinct greatest ele-
ments.

Solution 6 a) A partial ordering relation R on a set A has to be

• reflexive (∀a ∈ A : aRa)
• anti-symmetric (∀a, b ∈ A : if aRb and bRa, then a = b), and
• transitive (∀a, b, c ∈ A : if aRb and bRc, then aRc).

b) We need to prove that R is reflexive, anti-symmetric and transitive.
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• Reflexivity: If x ∈ S, then naturally we have x
x

= 1 ∈ Z. Hence x|x, so
xRx. This proves reflexivity.
• Anti-symmetry: If x, y ∈ S with xRy and yRx, then x|y and y|x. Since
we are dealing with positive integers, x|y implies x ≤ y and y|x implies
y ≤ x. Hence x = y. Therefore, the relation is symmetric.
• Transitivity: If x, y, z ∈ S with xRy and yRz, then we know that x|y
and y|z. This means that y

x
and z

y
are integers. Now z

x
= z

y
· y

x
, so as

a product of two integers, it must also be an integer. Hence x|z and so
xRz. This proves transitivity.

Since all three properties are satisfied, R is a partial ordering relation.

Figure 6: This figure belongs to Problem 6c

c) Minimal elements: h.
Maximal elements: a, d and f .
Least elements: h.
Greatest elements: none.

d) Suppose that R is a partial ordering relation on a set A with two greatest
elements x and y. Since x is a greatest element, we must have yRx. Since
y is a greatest element, we must have xRy. We know that R is a partial
ordering relation, so it must be anti-symmetric. As xRy and yRx, anti-
symmetry now tells us that x = y. Therefore, a partial ordering relation
cannot have two distinct greatest elements.


