Department of Mathematical Sciences # Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smita, Sverre Olaf Smaløb **Phone:** a 9285 0781, b 7359 1750 Examination date: 26-05-2016 Examination time (from-to): 09:00-13:00 Permitted examination support material: D: No printed or hand-written support material is allowed. A specific basic calculator is allowed. **Language:** English **Number of pages:** 7 Number of pages enclosed: 0 | | Checked by: | |------|-------------| | | | | Date | Signature | ### Problem 1 a) How many non-negative integer solutions does the equation $$x_1 + x_2 + x_3 + x_4 + x_5 = 21$$ have? - **b)** How many of these solutions satisfy the additional requirements $x_2 \ge 2$ and $x_3 \ge 3$? - c) How many of the solutions to (a) satisfy $x_4 \leq 4$ as an additional requirement? **Solution 1** a) There are $\binom{21+5-1}{21} = \binom{25}{21}$ non-negative integer solutions to this equation. - b) There are $\binom{16+5-1}{16} = \binom{20}{16}$ solutions to (a) that also satisfy $x_2 \ge 2$ and $x_3 \ge 3$. - c) There are $\binom{16+5-1}{16} = \binom{20}{16}$ solution to (a) that satisfy $x_4 \geq 5$. Therefore, there are $\binom{25}{21} \binom{20}{16}$ solutions to (a) that satisfy $x_4 \leq 4$. ## Problem 2 a) Determine whether or not the following statement is a tautology, by either proving it or giving a counterexample: $$\Big((p \to q) \land (r \to \neg q)\Big) \to (p \land r)$$ - **b)** Negate the statement given in (a). (In your final answer, the \neg symbol may only appear directly in front of p, q and/or r.) - c) Establish the validity of the following argument using the rules of inference $$\begin{array}{c} p \to \neg q \\ \neg r \lor q \\ r \end{array}$$ a) Using the truth values p = 0, q = 0, r = 0, we find that $(p \rightarrow q)$ is true and $(r \to \neg q)$ is true. Therefore $((p \to q) \land (r \to \neg q))$ is true. On the other hand, the statement $p \wedge r$ is false, and hence $(p \rightarrow q) \wedge (r \rightarrow q)$ $\neg q)) \rightarrow (p \wedge r)$ is false. Therefore, the statement is not a tautology. b) We negate the statement and work the negation through the brackets: $$\neg \Big(\Big((p \to q) \land (r \to \neg q) \Big) \to (p \land r) \Big) \iff \Big((p \to q) \land (r \to \neg q) \Big) \land \neg (p \land r)$$ $$\iff \Big((p \to q) \land (r \to \neg q) \Big) \land (\neg p \lor \neg r)$$ c) Using the rules of inference, we find that: - premise - premise - (3) r(4) q(5) $\neg n$ (2) + (3) + rule of disjunctive syllogism (1) + (4) + modus tollens Problem 3 Let $r \in \mathbb{R}$ with $r \neq 1$. Use induction to prove that $$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}$$ for all $n \in \mathbb{Z}^+$. **Solution 3** We prove the formula by induction. **Basic step**: For n = 1 we have $$\sum_{i=0}^{1} r^{i} = r^{0} + r^{1} = 1 + r$$ and $$\frac{1-r^{1+1}}{1-r} = \frac{1-r^2}{1-r} = \frac{(1+r)(1-r)}{1-r} = 1+r.$$ Therefore, the formula holds for n = 1. Now let $n \in \mathbb{Z}^+$ be arbitrary, and assume as an **Induction Hypothesis** that $$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}.$$ **Induction Step**: Using the induction hypothesis, we now prove the formula for n+1. We have $$\begin{split} \sum_{i=0}^{n+1} r^i &= \left(\sum_{i=0}^n r^i\right) + r^{n+1} \\ &= \frac{1 - r^{n+1}}{1 - r} + r^{n+1} \qquad by \ the \ induction \ hypothesis \\ &= \frac{1 - r^{n+1}}{1 - r} + \frac{(1 - r)r^{n+1}}{1 - r} \\ &= \frac{1 - r^{n+1}}{1 - r} + \frac{r^{n+1} - r^{n+2}}{1 - r} \\ &= \frac{1 - r^{n+1} + r^{n+1} - r^{n+2}}{1 - r} \\ &= \frac{1 - r^{n+2}}{1 - r} \\ &= \frac{1 - r^{(n+1)+1}}{1 - r} \end{split}$$ This shows that the formula also holds for n+1, which completes our induction proof. The formula must therefore be valid for all $n \in \mathbb{Z}^+$. #### Problem 4 - a) Give 6 different strings in the language $\{00\}\{101\}^* \cup \{011\}\{0\}^*\{01\}$ - **b)** Construct a finite state machine that recognises this language (with $\{0,1\}$ as input and output alphabet). Solution 4 a) There are many possible answers to this question. For example, take the strings 00, 00101, 00101101, 01101, 011001, 0110001. b) The Finite State Machine drawn in figure 1 recognises this language. There are also other valid solutions possible. Figure 1: This figure belongs to Solution 4 ## Problem 5 Figure 2: This figure belongs to Oppgave 5 - a) Find a rooted spanning tree with root a for this graph using a Breadth First Search Algorithm and vertex order a,b,c,d,e,f,g,h. - **b)** Study the graph in Figure 1 and determine whether or not is it planar. Prove your answer. - c) Does the graph in Figure 1 have an Euler Trail? Prove your answer. **Solution 5** a) We execute the Breadth First Search Algorithm with root a and vertex order a,b,c,d,e,f,g,h. We start the tree with only vertex a, and queue Q = (a). Next, we add vertices b, d and e to our tree with edges $\{a,b\}$, $\{a,d\}$ and $\{a,e\}$. Our new queue will be Q = (b,d,e). We will now add c, f and g to our tree with edges $\{b,c\}$, $\{b,f\}$ and $\{b,g\}$. Our new queue will be Q = (d,e,c,f,g). Finally, we add vertex h to our tree with edge $\{d,h\}$. Our queue will become Q = (e,c,f,g,h). Visiting the vertices left in the queue will not give us any new vertices to add to our tree, since all vertices have already been added. See figure 3 for the BFS spanning tree. Figure 3: This figure belongs to Solution 5a b) This graph is not planar. Consider the subgraph drawn in Figure 4, obtained by removing edges $\{h, f\}$, $\{b, f\}$, $\{a, b\}$, $\{a, d\}$, $\{a, e\}$ and vertex a. This graph can be obtained from K_5 by elementary subdivisions: draw K_5 and label its vertices b, c, e, g, h and apply an elementary subdivision to edges $\{e, g\}$ and $\{b, h\}$. We see that our original graph contains a subgraph which is homeomorphic to K_5 . Therefore, it cannot be planar. c) Notice that vertices d and a have degree 3, and vertices e and h have degree 5. Since the graph has more than two vertices of odd degree, it cannot have an Euler Trail. Figure 4: This figure belongs to Solution 5b **Problem 6** Let A be the set of all functions from \mathbb{Z}^+ to $\{1, 2, 3\}$. - a) Give the three properties of an equivalence relation. You may give the names of these properties, or their definitions. - **b)** Define a relation \mathcal{R}_1 on A by setting $f\mathcal{R}_1g$ if and only if f(5) = g(5). Prove that \mathcal{R}_1 is an equivalence relation. - c) Define a relation \mathcal{R}_2 on A by setting $f\mathcal{R}_2g$ if and only if there exists an $n \in \mathbb{Z}^+$ such that f(n) = g(n). Prove that \mathcal{R}_2 is not an equivalence relation. **Solution 6** a) An equivalence relation \mathcal{R} on a set A has to be - reflexive $(\forall a \in A : a\mathcal{R}a)$ - symmetric $(\forall a, b \in A : if a\mathcal{R}b, then b\mathcal{R}a)$, and - transitive $(\forall a, b, c \in A : if aRb \ and \ bRc, \ then \ aRc)$. - b) We need to prove that \mathcal{R}_1 is reflexive, symmetric and transitive. - Reflexivity: If $f \in A$, then naturally we have f(5) = f(5). Hence $f\mathcal{R}_1 f$. This proves reflexivity. - Symmetry: If $f, g \in A$ and $f\mathcal{R}_1g$, then f(5) = g(5). This implies that g(5) = f(5), so $g\mathcal{R}_1f$. Therefore, the relation is symmetric. • Transitivity: If $f, g, h \in A$ with $f\mathcal{R}_1g$ and $g\mathcal{R}_1h$, then we know that f(5) = g(5) and g(5) = h(5). This implies that f(5) = h(5), so $f\mathcal{R}_1h$. This proves transitivity. Since all three properties are satisfied, \mathcal{R}_1 is an equivalence relation. c) Define the function $f: \mathbb{Z}^+ \to \{1, 2, 3\}$ by f(n) = 1 for all $n \in \mathbb{Z}^+$. Define the function $g: \mathbb{Z}^+ \to \{1, 2, 3\}$ by g(1) = 1 and g(n) = 2 for all $n \geq 2$ with $n \in \mathbb{Z}^+$. Define the function $h: \mathbb{Z}^+ \to \{1, 2, 3\}$ by h(n) = 2 for all $n \in \mathbb{Z}^+$. Then f, g, and h are elements of A. Since f(1) = 1 = g(1), we have $f\mathcal{R}_2g$. And as g(2) = h(2), we have $g\mathcal{R}_2h$. Now note that for all $n \in \mathbb{Z}^+$ we have $f(n) = 1 \neq 2 = h(n)$, which implies that $f\mathcal{R}_2h$. Therefore, the relation \mathcal{R}_2 is not transitive. This means that it cannot be an equivalence relation.