MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2017

Exam 1

Exercise 1: 15 points
Exercise 2: 10 points
Exercise 3: 15 points
Exercise 4: 15 points
Exercise 5: 20 points
Exercise 6: 15 points
Exercise 7: 10 points
Total: 100 points

Exercise 1. Sets (15 points) Use only the laws of set theory to proof the following statements for arbitrary sets A, B, C.
(1) (7 points)

$$
\text { If } \quad(A \cup B) \subseteq(A \cap B) \quad \text { then } \quad A=B
$$

(2) (4 points)

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

(3) (4 points)

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Solution 1. (1) Let's assume that $(A \cup B) \subseteq(A \cap B)$. We want to show that $A=B$, i.e., $A \subseteq B$ and $B \subseteq A$. Let's assume that $x \in A$

$$
x \in A \Rightarrow x \in A \cup B \Rightarrow x \in A \cap B \Rightarrow x \in B .
$$

Now we assume that $x \in B$

$$
x \in B \Rightarrow x \in A \cup B \Rightarrow x \in A \cap B \Rightarrow x \in A .
$$

This implies $A=B$.

$$
\begin{equation*}
x \in \overline{A \cap B} \Leftrightarrow x \notin(A \cap B) \Leftrightarrow(x \notin A) \text { or }(x \notin B) \Leftrightarrow(x \in \bar{A}) \text { or }(x \in \bar{B}) \Leftrightarrow x \in \bar{A} \cup \bar{B} . \tag{2}
\end{equation*}
$$

$$
\begin{align*}
x \in A \cap(B \cup C) & \Leftrightarrow(x \in A) \text { and }(x \in(B \cup C)) \tag{3}\\
& \Leftrightarrow(x \in A) \text { and }((x \in B) \text { or }(x \in C)) \\
& \Leftrightarrow((x \in A) \text { and }(x \in B)) \text { or }((x \in A) \text { and }(x \in C)) \\
& \Leftrightarrow((x \in(A \cap B)) \text { or }((x \in(A \cap C)) \Leftrightarrow(A \cap B) \cup(A \cap C)
\end{align*}
$$

Exercise 2. Logic (10 points)
(1) (6 points) Use the laws of logic to simplify:

$$
(p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r)) \wedge((p \wedge r \wedge t) \vee t)
$$

(2) (4 points) Use a truth table to show that:

$$
((a \wedge b) \longrightarrow c) \Leftrightarrow((a \longrightarrow c) \vee(b \longrightarrow c))
$$

Solution 2. (1) We want to simplify $(p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r)) \wedge((p \wedge r \wedge t) \vee t)$.

$$
\begin{aligned}
& (p \vee(p \wedge q) \vee(p \wedge q \wedge \neg r)) \wedge((p \wedge r \wedge t) \vee t) \\
& \Leftrightarrow(p \vee((p \wedge q) \wedge T) \vee((p \wedge q) \wedge \neg r)) \wedge(((p \wedge r) \wedge t) \vee(T \wedge t)) \\
& \Leftrightarrow(p \vee((p \wedge q) \wedge(T \vee \neg r))) \wedge(((p \wedge r) \vee T) \wedge t) \\
& \Leftrightarrow(p \vee((p \wedge q) \wedge T) \wedge(T \wedge t) \\
& \Leftrightarrow(p \vee(p \wedge q)) \wedge t \\
& \Leftrightarrow p \wedge t
\end{aligned}
$$

(2) The truth table for $((a \wedge b) \longrightarrow c) \Leftrightarrow((a \longrightarrow c) \vee(b \longrightarrow c))$ is

a	b	c	$a \wedge b$	$a \longrightarrow c$	$b \longrightarrow c$	x	y	z
T	T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F	T
T	F	T	F	T	T	T	T	T
T	F	F	F	F	T	T	T	T
F	T	T	F	T	T	T	T	T
F	T	F	F	T	F	T	T	T
F	F	T	F	T	T	T	T	T
F	F	F	F	T	T	T	T	T

where $x:=(a \wedge b) \longrightarrow c \quad y:=(a \longrightarrow c) \vee(b \longrightarrow c) \quad z:=((a \wedge b) \longrightarrow c) \longleftrightarrow((a \longrightarrow c) \vee(b \longrightarrow c))$.

Exercise 3. Equivalence relation (15 points)
(1) (3 points) Write down the definition of an equivalence relation.
(2) (2 points) Write down the definition of an equivalence class.
(3) (10 points) Let $A:=\{1,2,3\}$. Determine whether the following relations on A are equivalence relations. Give an argument in each case. If an equivalence relation is given determine the equivalence classes.

- i) (5 points) $R_{1}:=\{(1,1),(2,2),(3,3),(1,2),(2,1),(3,1),(1,3)\}$
- ii) (5 points) $R_{2}:=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)\}$

Solution 3. (1) An equivalence relation R on the set $A(\neq \emptyset)$ is reflexive, symmetric, and transitive.
(2) Let R be an equivalence relation on the set $A(\neq \emptyset)$. For each $a \in A$, let $[a]$ denote the set of elements in A to which a is related through R. The set $[a]$ is called equivalence class of a in A.
(3) No, it is not transitive.
(4) Yes. Its only equivalence class is $\{1,2,3\}$.

Exercise 4. Functions (15 points)

(1) (2 points) Give the definition of a surjective (onto) function.
(2) (3 points) Give the definition of a injective (one-to-one) function.
(3) (5 points) Let $g: A \rightarrow B$ and $f: B \rightarrow C$ be two functions. Prove that if g and f are both injective, then $f \circ g: A \rightarrow C$ is injective.
(4) (5 points) Define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n):=2 n$. Show that f is injective and that f is not surjective.

Solution 4. (1) A function $f: A \rightarrow B$ is called surjective (or onto) if for every $b \in B$ there exists an $a \in A$ such that $f(a)=b$, i.e., f is onto if $f(A)=B$.
(2) A function $f: A \rightarrow B$ is called injective (or one-to-one), if each element of B appears at most once as the image of an element A, i.e., if all elements of A have different images: $x, y \in A, f(x)=f(y) \Rightarrow x=y$.
(3) Suppose $f \circ g(x)=f \circ g(y)$. Then $f(g(x))=f(g(y))$ and $g(x)=g(y)$ since f is injective. Furthermore, $x=y$ since g is injective.
(4) It is not surjective since odd natural numbers are not in the image of f. It is injective by direct check following the definition.

Exercise 5. Induction (20 points)

(1) (5 points) Show by induction that for all natural numbers

$$
\sum_{k=1}^{n} k(k+2)(k+4)=\frac{1}{4} n(n+1)(n+4)(n+5) .
$$

(2) (7 points) Prove by induction that for all positive integers

$$
2+6+10+\cdots+(4 n-2)=2 n^{2}
$$

(3) (8 points) Show by induction that $n^{3}-n$ is divisible by 3 for any positive integer n. (Recall that a positive integer m is divisible by 3 provided that there exists a positive integer t so that $m=3 t$).

Solution 5. (1) Base step: for $n=1$ we find $1 \times 3 \times 5=15$ on the lefthand side, and $1 / 4 \times 1 \times 2 \times 5 \times 6=$ $60 / 4=15$, i.e., the statement holds for $n=1$. Induction step: assume the statement holds up to k,
$\sum_{i=1}^{k} i(i+2)(i+4)=\frac{1}{4} k(k+1)(k+4)(k+5)$. For $n=k+1$ the lefthand side is then

$$
\begin{aligned}
\frac{1}{4} k(k+1)(k+4)(k+5) & +4(k+1)(k+1+2)(k+1+4) / 4 \\
& =(k+1)(k+1+4)(k+2)(k+6) / 4 \\
& =(k+1)(k+1+1)(k+1+4)(k+1+5) / 4
\end{aligned}
$$

which gives the righthand side.
(2) Base step: for $n=1$ we find $2=2 \times 1^{2}=2$, i.e., the statement holds for $n=1$. Induction step: assume the statement holds up to k

$$
2+6+10+\cdots+(4 k-2)=2 k^{2}
$$

For $n=k+1$ we find

$$
\begin{aligned}
2+6+10+\cdots+(4 k-2)+(4 k+2) & =2 k^{2}+(4 k+2) \\
& =2 k^{2}+4 k+2=2\left(k^{2}+2 k+1\right)=2(k+1)^{2}
\end{aligned}
$$

which is what was to prove.
(3) Base step: for $n=1$ we find $1-1=0$, which is divisible by 3 , i.e., $0=3 \times 0$, i.e., the statement holds for $n=1$. Induction step: assume the statement holds up to k. Consider $(k+1)^{3}-(k+1)$

$$
(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k+1-(k+1)=k^{3}-k+3\left(k^{2}+k\right)=3 m+3\left(k^{2}+k\right)=3 m^{\prime}
$$

where $m^{\prime}:=m+\left(k^{2}+k\right)$.

Exercise 6. Finite state automata (15 points)

(1) (10 points) Draw the state diagram $D(M)$ of the automaton M with states $S:=$ $\left\{s_{0}, s_{1}, s_{2}\right\}$, accepting states $Y:=\left\{s_{0}, s_{2}\right\}$, input alphabet $I:=\{a, b\}$, described in the following state table $T(M)$:

	ν	
	a	
s_{0}	s_{1}	s_{0}
s_{1}	s_{2}	s_{0}
s_{2}	s_{2}	s_{1}

(2) (5 points) Which of the following input words are accepted by M and which are not accepted by M?

1) $b b a a b$
2) $a b b a b$
3) $a a b b b$
4) $b a b a a b$
5) $a a a b b b$

Solution 6. (1)

(2) 1) not accepted; 2) accepted; 3) accepted; 4) not accepted; 5) accepted

Exercise 7. Graphs (10 points)
(10 points) Let G be an arbitrary finite connected planar graph with at least three vertices. Show that G contains at least one vertex of degree equal or smaller than five.

Solution 7. Recall that the sum of degrees of vertices equals $2|E|$, where E is the set of edges of the graph $G ; V$ is the set of vertices of G. We assume that there are at least three vertices. Recall that $2|E| \leq 6|V|-12$. If every vertex has degree bigger than 5 , then the sum of degrees of vertices is greater or equal than $6|V|$. Hence $2|E| \geq 6|V|$, which contradicts $2|E| \leq 6|V|-12$. Hence, there must be at least one vertex of degree five or smaller.

