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Exercise 1: 10 points

Exercise 2: 20 points

Exercise 3: 15 points

Exercise 4: 20 points

Exercise 5: 15 points

Exercise 6: 10 points

Exercise 7: 10 points Total: 100 points

Problem 1 Logic (10 points) Use the laws of logic

1. (5 points) to simplify:(
p ∧ (¬s ∨ q ∨ ¬q)

)
∨
(
(s ∨ t ∨ ¬s) ∧ ¬q

)

2. (5 points) to show that: (
p→ (q ∨ r)

)
⇔
(
(p ∧ ¬q)→ r

)

Problem 2 Partially ordered sets (20 points)

1. (3 points) Write down the definition of a partial order.

2. (5 points) Does the relation R := {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (c, d), (d, a)}
define a partial ordering on A := {a, b, c, d}?
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3. (5 points) List the set A and express the relation R as a set of ordered pairs for the
Hasse diagram

d

e

c

a b

4. (7 points) Construct the Hasse diagram of the partially ordered set (A,R), where A :=
{a, b, c, d} and R := {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (c, d), (a, d), (b, d)}.

Problem 3 Boolean algebra (15 points) Use Boolean algebra to

1. (6 points) prove that
x′y′ + x′y + xy = x′ + y

2. (6 points) prove that
y + x′z + xy′ = x+ y + z

3. (3 points) simplify
xyz + xyz′ + x′y

Problem 4 Induction (20 points)

1. (4 points) Prove that
n∑

i=1
i3 = n2(n+ 1)2

4 .
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2. Define ⋃n
i=1 Ai by ⋃1

i=1 Ai = A1 and ⋃n+1
i=1 Ai =

(⋃n
i=1 Ai

)
∪ An+1. Define ⋂n

i=1 Ai by⋂1
i=1 Ai = A1 and ⋂n+1

i=1 Ai =
(⋂n

i=1 Ai

)
∩ An+1.

i) (4 points) Prove that ( n⋃
i=1

Ai

)
∩ A =

n⋃
i=1

(Ai ∩ A).

ii) (4 points) Prove that ( n⋃
i=1

Ai

)
=

n⋂
i=1

Ai.

Recall that A denotes the complement of A.

3. (8 points) Use the trigonometrical addition formulas:

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

to prove that for n a positive integer(
cos(c) + i sin(c)

)n
= cos(nc) + i sin(nc).

This formula is known as De Moivre’s Theorem. Note that i is the so-called imaginary
unit, and you should use that i2 = −1.

Problem 5 Binomial coefficients (15 points)

1. (2 points) Use the binomial theorem to compute
27∑

i=0

(
27
i

)
(−3)2i+1.

2. (10 points) Use the binomial theorem to show Vandermonde’s formula(
a+ b

r

)
=

r∑
k=0

(
a

k

)(
b

r − k

)
, (1)

where a, b, r are positive integers and r ≤ min(a, b).
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3. (3 points) Use Vandermonde’s formula (1) to show that(
2n
n

)
=

n∑
k=0

(
n

k

)(
n

k

)
.

Problem 6 Finite state automata (10 points)

1. (7 points) Draw the state diagram D(M) of the automaton M with states S :=
{s0, s1, s2}, accepting states Y := {s0}, input alphabet I := {a, b}, described in the
state table T (M):

ν

a b

s0 s0 s1

s1 s0 s2

s2 s2 s2

2. (3 points) Write a regular expression for the language accepted by M .

Problem 7 Graphs (10 points)

1. (5 points) Is there an undirected graph with 102 vertices, such that exactly 49 vertices
have degree 5, and the remaining 53 vertices have degree 6?

2. (5 points) If a planar graph has 12 vertices, each of degree 3, how many regions and
edges does the graph have?


