MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2017

Exam 1

Exercise 1: 10 points
Exercise 2: 20 points
Exercise 3: 15 points
Exercise 4: 20 points
Exercise 5: 15 points
Exercise 6: 10 points
Exercise 7: 10 points

Total: 100 points

Exercise 1. Logic (10 points) Use the laws of logic
(1) (5 points) to simplify:

$$
(p \wedge(\neg s \vee q \vee \neg q)) \vee((s \vee t \vee \neg s) \wedge \neg q)
$$

(2) (5 points) to show that:

$$
(p \rightarrow(q \vee r)) \Leftrightarrow((p \wedge \neg q) \rightarrow r)
$$

Solution 1. (1) We want to simplify $(p \wedge(\neg s \vee q \vee \neg q)) \vee((s \vee t \vee \neg s) \wedge \neg q)$.

$$
\begin{aligned}
(p \wedge(\neg s \vee q \vee \neg q)) \vee((s \vee t \vee \neg s) \wedge \neg q) & \Leftrightarrow(p \wedge(\neg s \vee(q \vee \neg q))) \vee((t \vee(s \vee \neg s)) \wedge \neg q) \\
& \Leftrightarrow(p \wedge(\neg s \vee T)) \vee((t \vee T) \wedge \neg q) \\
& \Leftrightarrow(p \wedge T) \vee(T \wedge \neg q) \\
& \Leftrightarrow p \vee \neg q .
\end{aligned}
$$

We used that $q \vee p=p \vee q$ and that, in general, $q \vee \neg q=T$, where T is the truth value.
(2) We want to show that $(p \rightarrow(q \vee r)) \Leftrightarrow((p \wedge \neg q) \rightarrow r)$.

$$
\begin{aligned}
(p \rightarrow(q \vee r)) & \Leftrightarrow \neg p \vee(q \vee r) \\
& \Leftrightarrow(\neg p \vee q) \vee r \\
& \Leftrightarrow[\neg \neg(\neg p \vee q)] \vee r \\
& \Leftrightarrow[\neg(p \wedge \neg q)] \vee r \\
& \Leftrightarrow((p \wedge \neg q) \rightarrow r) .
\end{aligned}
$$

We used logical equivalence, $p \rightarrow q \Leftrightarrow(\neg p \vee q)$; associativity; double negation; De Morgan's law; double negation; and logical equivalence.

Exercise 2. Partially ordered sets (20 points)

(1) (3 points) Write down the definition of a partial order.
(2) (5 points) Does the relation $R:=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, c),(c, d),(d, a)\}$ define a partial ordering on $A:=\{a, b, c, d\}$?
(3) (5 points) List the set A and express the relation R as a set of ordered pairs for the Hasse diagram

(4) (7 points) Construct the Hasse diagram of the partially ordered set (A, R), where $A:=$ $\{a, b, c, d\}$ and $R:=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, c),(a, c),(c, d),(a, d),(b, d)\}$.

Solution 2. (1) A relation R on a set A is called a partial order of A if R is reflexive, anti-symmetric and transitive. A together with a partial order R is called a partially ordered set (poset).
(2) No.
(3) $A=\{a, b, c, d, e\}$ and $R=\{(a, a),(b, b),(c, c),(d, d),(e, e),(d, b),(d, a),(d, e),(c, e),(c, a),(c, b),(e, a),(e, b)\}$.
(4)

Exercise 3. Boolean algebra (15 points) Use Boolean algebra to
(1) (6 points) prove that

$$
x^{\prime} y^{\prime}+x^{\prime} y+x y=x^{\prime}+y
$$

(2) (6 points) prove that

$$
y+x^{\prime} z+x y^{\prime}=x+y+z
$$

(3) (3 points) simplify

$$
x y z+x y z^{\prime}+x^{\prime} y
$$

Solution 3. (1) We want to show that $x^{\prime} y^{\prime}+x^{\prime} y+x y=x^{\prime}+y$.

$$
\begin{aligned}
x^{\prime} y^{\prime}+x^{\prime} y+x y & =x^{\prime} y^{\prime}+x^{\prime} y+x^{\prime} y+x y \\
& =x^{\prime}\left(y+y^{\prime}\right)+y\left(x^{\prime}+x\right) \\
& =x^{\prime}+y .
\end{aligned}
$$

In the first line we used the idempotent law $x^{\prime} y+x^{\prime} y=x^{\prime} y$. In the second line we used that $x^{\prime}+x=y^{\prime}+y=1$.
(2) We want to show that $y+x^{\prime} z+x y^{\prime}=x+y+z$.

$$
\begin{aligned}
y+x^{\prime} z+x y^{\prime} & =y(1+x)+x^{\prime} z+x y^{\prime} \\
& =(y+x)\left(y^{\prime}+y\right)+x^{\prime} z \\
& =y+x+x^{\prime} z \\
& =y+\left(x+x^{\prime}\right)(x+z) \\
& =y+x+z
\end{aligned}
$$

In the first line we used the null law, $1+x=1$. In the second line we used $y y=y$ and $y y^{\prime}=0$. In the third line we used $y+y^{\prime}=1$. In the fourth line we used again $x x=x$ and $x^{\prime} x=0$.
(3) We want to simplify $x y z+x y z^{\prime}+x^{\prime} y$.

$$
x y z+x y z^{\prime}+x^{\prime} y=x y\left(z+z^{\prime}\right)+x^{\prime} y=x y+x^{\prime} y=\left(x+x^{\prime}\right) y=y .
$$

Exercise 4. Induction (20 points)

(1) (4 points) Prove that

$$
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

(2) Define $\bigcup_{i=1}^{n} A_{i}$ by $\bigcup_{i=1}^{1} A_{i}=A_{1}$ and $\bigcup_{i=1}^{n+1} A_{i}=\left(\bigcup_{i=1}^{n} A_{i}\right) \cup A_{n+1}$. Define $\bigcap_{i=1}^{n} A_{i}$ by $\bigcap_{i=1}^{1} A_{i}=A_{1}$ and $\bigcap_{i=1}^{n+1} A_{i}=\left(\bigcap_{i=1}^{n} A_{i}\right) \cap A_{n+1}$.
i) (4 points) Prove that

$$
\left(\bigcup_{i=1}^{n} A_{i}\right) \cap A=\bigcup_{i=1}^{n}\left(A_{i} \cap A\right)
$$

ii) (4 points) Prove that

$$
\overline{\left(\bigcup_{i=1}^{n} A_{i}\right)}=\bigcap_{i=1}^{n} \overline{A_{i}}
$$

Recall that \bar{A} denotes the complement of A.
(3) (8 points) Use the trigonometrical addition formulas:

$$
\begin{aligned}
& \cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
& \sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)
\end{aligned}
$$

to prove that for n a positive integer

$$
(\cos (c)+i \sin (c))^{n}=\cos (n c)+i \sin (n c)
$$

This formula is known as De Moivre's Theorem. Note that i is the so-called imaginary unit, and you should use that $i^{2}=-1$.

Solution 4. (1) Base step $n=1: 1^{3}=1^{2} 2^{2} / 4$, the statement is true for $n=1$.
Ind. step: assume it is true for $n=k$, i.e., $\sum_{i=1}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{4}$. We want to prove it for $n=k+1$:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{3}=\sum_{i=1}^{k} i^{3}+(k+1)^{3} & =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \\
& =\frac{(k+1)^{2}\left(k^{2}+4(k+1)\right)}{4} \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4}
\end{aligned}
$$

This shows that the statement holds for $n=k+1$.
(2.i) Base step $n=1: A_{1} \cap A=A_{1} \cap A$, the statement is true for $n=1$.

Ind. step: assume it is true for $n=k,\left(\bigcup_{i=1}^{k} A_{i}\right) \cap A=\bigcup_{i=1}^{k}\left(A_{i} \cap A\right)$. We want to show it for $n=k+1$.

$$
\begin{aligned}
\left(\bigcup_{i=1}^{k+1} A_{i}\right) \cap A & =\left(\bigcup_{i=1}^{k} A_{i} \cup A_{k+1}\right) \cap A \\
& =\left(\left(\bigcup_{i=1}^{k} A_{i}\right) \cap A\right) \cup\left(A_{k+1} \cap A\right) \\
& =\bigcup_{i=1}^{k}\left(A_{i} \cap A\right) \cup\left(A_{k+1} \cap A\right) \\
& =\bigcup_{i=1}^{k+1}\left(A_{i} \cap A\right)
\end{aligned}
$$

This shows that the statement holds for $n=k+1$.
(2.ii) Base step $n=1: \overline{A_{1}}=\overline{A_{1}}$, the statement is true for $n=1$.

Ind. step: assume it is true for $n=k, \overline{\left(\bigcup_{i=1}^{k} A_{i}\right)}=\bigcap_{i=1}^{k} \overline{A_{i}}$. We want to show it for $n=k+1$.

$$
\begin{aligned}
\overline{\left(\bigcup_{i=1}^{k+1} A_{i}\right)} & =\overline{\left(\bigcup_{i=1}^{k} A_{i} \cup A_{k+1}\right)} \\
& =\overline{\left(\bigcup_{i=1}^{k} A_{i}\right) \cap \overline{A_{k+1}}} \\
& =\bigcap_{i=1}^{k} \overline{A_{i}} \cap \overline{A_{k+1}}=\bigcap_{i=1}^{k+1} \overline{A_{i}}
\end{aligned}
$$

This shows that the statement holds for $n=k+1$.
(3) Base step $n=1:(\cos (c)+i \sin (c))^{1}=\cos (1 c)+i \sin (1 c)$, the statement is true for $n=1$.

Ind. step: assume it is true for $n=k,(\cos (c)+i \sin (c))^{k}=\cos (k c)+i \sin (k c)$. We want to show it for $n=k+1$.

$$
\begin{aligned}
(\cos (c)+i \sin (c))^{k+1} & =(\cos (c)+i \sin (c))^{k}(\cos (c)+i \sin (c)) \\
& =(\cos (k c)+i \sin (k c))(\cos (c)+i \sin (c)) \\
& =\cos (k c) \cos (c)-\sin (k c) \sin (c)+i(\sin (k c) \cos (c)+\cos (k c) \sin (c)) \\
& =\cos ((k+1) c)+i \sin ((k+1) c)
\end{aligned}
$$

This shows that the statement holds for $n=k+1$.

Exercise 5. Binomial coefficients (15 points)

(1) (2 points) Use the binomial theorem to compute

$$
\sum_{i=0}^{27}\binom{27}{i}(-3)^{2 i+1}
$$

(2) (10 points) Use the binomial theorem to show Vandermonde's formula

$$
\begin{equation*}
\binom{a+b}{r}=\sum_{k=0}^{r}\binom{a}{k}\binom{b}{r-k} \tag{1}
\end{equation*}
$$

where a, b, f are positive integers and $r \leq \min (a, b)$.
(3) (3 points) Use Vandermonde's formula (1) to show that

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{k}
$$

Solution 5. (1) The binomial theorem says that

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Hence

$$
(x+1)^{27}=\sum_{k=0}^{27}\binom{27}{k} x^{k}
$$

Note that

$$
\sum_{i=0}^{27}\binom{27}{i}(-3)^{2 i+1}=-3 \sum_{i=0}^{27}\binom{27}{i}(-3)^{2 i}=-3 \sum_{i=0}^{27}\binom{27}{i} 9^{i}
$$

which implies that

$$
\sum_{i=0}^{27}\binom{27}{i}(-3)^{2 i+1}=-3 \cdot 10^{27}
$$

(2) Use the formula

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right)\left(\sum_{j=0}^{m} b_{j} x^{j}\right)=\sum_{r=0}^{n+m}\left(\sum_{k=0}^{r} a_{k} b_{r-k}\right) x^{r}
$$

where it is understood that $a_{i}=0$ for $i>n$ and $b_{j}=0$ for $j>m$. The binomial theorem says that

$$
(1+x)^{m+n}=\sum_{k=0}^{n+m}\binom{n+m}{k} x^{k}
$$

Put these formulas together

$$
\begin{aligned}
\sum_{k=0}^{n+m}\binom{n+m}{k} x^{k}=(1+x)^{m+n} & =(1+x)^{m}(1+x)^{n} \\
& =\left(\sum_{k=0}^{m}\binom{m}{k} x^{k}\right)\left(\sum_{r=0}^{n}\binom{n}{r} x^{r}\right) \\
& =\sum_{r=0}^{n+m}\left(\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}\right) x^{r}
\end{aligned}
$$

Now compare coefficients of x^{j}, for $j=1, \ldots, n+m$, which gives (1).
(3) Set $a=b=r=n$, then Vandermonde's formula says that

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}
$$

With

$$
\binom{n}{k}=\binom{n}{n-k}
$$

the statement follows.

Exercise 6. Finite state automata (10 points)

(1) (7 points) Draw the state diagram $D(M)$ of the automaton M with states $S:=$ $\left\{s_{0}, s_{1}, s_{2}\right\}$, accepting states $Y:=\left\{s_{0}\right\}$, input alphabet $I:=\{a, b\}$, described in the state table $T(M)$:

	ν	
	a	b
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{2}
s_{2}	s_{2}	s_{2}

(2) (3 points) Write a regular expression for the language accepted by M.

Solution 6. (1)

(2) $(a \vee b a)^{*}$

Exercise 7. Graphs (10 points)

(1) (5 points) Is there an undirected graph with 102 vertices, such that exactly 49 vertices have degree 5 , and the remaining 53 vertices have degree 6 ?
(2) (5 points) If a planar graph has 12 vertices, each of degree 3, how many regions and edges does the graph have?

Solution 7. (1) Graph $G=(V, E)$: use formula $2|E|=\sum_{v \in V} \operatorname{deg}(v)$, which says that

$$
49 \cdot 5+53 \cdot 6=2|E|
$$

The righthand side is an even number, whereas the lefthand side is an odd number. Hence, there is no such graph.
(2) Graph $G=(V, E)$: use formula $2|E|=\sum_{v \in V} \operatorname{deg}(v)$, which gives the number of edges, $|E|=18$. Then use Euler's formula $|V|-|E|+|R|=2$, which gives the number of regions, $|R|=8$.

