MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2018

Exercise 1 (Logic):
Exercise 2 (Relations):
Exercise 3 (Induction):
Exercise 4 (Functions):
Exercise 5 (Fibonacci numbers):
Exercise 6 (Graphs):

Exam 2

10 points
20 points
30 points
15 points
10 points
15 points
Total: 100 points

Exercise 1. Logic (10 points)
(1) (4 points) Give the truth table for the statement

$$
(p \wedge(\neg q)) \longrightarrow r
$$

(2) (6 points) Use the laws of logic to show that $((\neg p) \vee(\neg q)) \wedge\left(F_{0} \vee p\right) \wedge p$ is logically equivalent to $p \wedge(\neg q)$. Recall that F_{0} denotes any contradiction.

Solution 1. 1) Truth table for the statement $(p \wedge(\neg q)) \longrightarrow r$:

p	q	r	$\neg q$	$p \wedge(\neg q)$	$(p \wedge(\neg q)) \rightarrow r)$
T	T	T	F	F	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
F	T	F	F	F	T
F	F	T	T	F	T
F	F	F	T	F	T

2) Show that $\left(((\neg p) \vee(\neg q)) \wedge\left(F_{0} \vee p\right) \wedge p\right) \Leftrightarrow(p \wedge(\neg q))$

$$
\begin{aligned}
& ((\neg p) \vee(\neg q)) \wedge\left(F_{0} \vee p\right) \wedge p \Leftrightarrow((\neg p) \vee(\neg q)) \wedge(p \wedge p) \\
& \Leftrightarrow((\neg p) \vee(\neg q)) \wedge p \\
& \Leftrightarrow(\neg p \wedge p) \vee(\neg q \wedge p) \\
& \Leftrightarrow F_{0} \vee(\neg q \wedge p) \\
& \Leftrightarrow(\neg q \wedge p) \\
& \Leftrightarrow p \wedge(\neg q)
\end{aligned}
$$

Exercise 2. Relations (20 points)
(1) (3 points) One of the following definitions is correct. Which one is it?
I) A relation R on a set A is called a partial order, or a partial ordering relation, if R is reflexive, anti-symmetric, and transitive.
II) A relation R on a set A is called a partial order, or a partial ordering relation, if R is anti-reflexive, anti-symmetric, and transitive.
III) A relation R on a set A is called a partial order, or a partial ordering relation, if R is reflexive, symmetric, and transitive.
(2) (7 points) Define the relation R on the integers \mathbb{Z} in the following way: for all $a, b \in \mathbb{Z}$, we have $a R b$ if and only if $a+b$ is an even number. Prove or disprove (by a counterexample) that R is a partial ordering relation.
(3) (10 points) Define the relation R on the set $S:=\{0,1,2,3\}$:

$$
R:=\{(0,0),(0,2),(1,0),(1,3),(2,2),(3,0),(3,1)\}
$$

Draw the directed graph for the relation R. Prove or disprove that this relation is antisymmetric.

Solution 2. 1) I is the right definition.
2) R is not a partial ordering relation on \mathbb{Z}. As a counterexample we consider $3+5=8$, which is even, and therefore $3 R 5$ and $5 R 3$ but we do not have $5=3$, i.e., we have $5 \neq 3$. This implies that R is not anti-symmetric.
3) R is not anti-symmetric, because $3 R 1$ and $1 R 3$ but $1 \neq 3$. See Figure 1 .

Figure 1. Exercise 2, solution 3)

Exercise 3. Induction (30 points)
(1) ($\mathbf{1 0}$ points) Use induction to show that for $n>0$:

$$
\sum_{k=1}^{n} k(k!)=(n+1)!-1
$$

(2) (20 points) Recall the definition of the Lucas numbers, i.e., $L_{0}=2, L_{1}=1$, and $L_{k}=$ $L_{k-1}+L_{k-2}$ for $k>1$.
a) (10 points) Use induction to show that for $n \geq 0$:

$$
\sum_{r=0}^{n} L_{2 r}=L_{2 n+1}+1
$$

b) ($\mathbf{1 0}$ points) Use induction to show that for $n \geq 0, L_{3 n}$ is an even number.

Solution 3. 1) Let $n=1: \sum_{k=1}^{1} k(k!)=1!=(1+1)!-1$. We assume that the statement holds for $n=k$, i.e., $\sum_{j=1}^{k} j(j!)=(k+1)!-1$. We want to show that it holds for $n=k+1$.

$$
\sum_{j=1}^{k+1} j(j!)=\sum_{j=1}^{k} j(j!)+(k+1)(k+1)!=(k+1)!-1+(k+1)(k+1)!=(k+1)!((k+1)+1)-1=(k+2)!-1 .
$$

2)a) Let $n=0: \sum_{r=0}^{0} L_{2 r}=L_{0}=2=L_{1}+1$. We assume that the statement holds for $n=k$, i.e., $\sum_{j=0}^{k} L_{2 j}=L_{2 k+1}+1$. We want to show that it holds for $n=k+1$.

$$
\sum_{j=0}^{k+1} L_{2 j}=\sum_{j=0}^{k} L_{2 j}+L_{2 k+2}=L_{2 k+1}+1+L_{2 k+2}=L_{2 k+3}+1=L_{2(k+1)+1}+1
$$

2)b) Let $n=0: L_{0}=2$. We assume that the statement holds for $n=k$, i.e., $L_{3 k}$ is even. We want to show that it holds for $n=k+1$.

$$
L_{3 k+3}=L_{3 k+2}+L_{3 k+1}=L_{3 k+1}+L_{3 k}+L_{3 k+1}=2 L_{3 k+1}+L_{3 k} .
$$

This is an even number since $L_{3 k}$ is even.

Exercise 4. Functions (15 points)
(1) (3 points) One of the following definitions is correct. Which one is it? I) A function $f: A \rightarrow B$ is called surjective (onto) if $f(A) \subset B$.
II) A function $f: A \rightarrow B$ is called surjective (onto) if $f(A)=B$.
III) A function $f: A \rightarrow B$ is called surjective (onto) if for all $a_{1}, a_{2} \in A$, whenever $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$.
(2) (5 points) The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined for all integers by $f(n):=4 n-1$. Prove or disprove (by a counterexample) that f is surjective.
(3) (7 points) Let $A:=\{1,2,3,4\}$ and $B:=\{5,6,7\}$. Define a function $f: A \rightarrow B$ that is surjective but not injective.

Solution 4. 1) II is the correct definition of a surjective function.
2) Note that $0 \notin f(\mathbb{Z})$, which implies that $f(\mathbb{Z}) \neq \mathbb{Z}$.
3) Define $f(1)=5, f(2)=6, f(3)=7$, and $f(4)=7$.

Exercise 5. Fibonacci numbers (10 points)

(1) (3 points) One of the three statements is correct. Which one is it?
I) The Fibonacci numbers may be defined recursively by: $F_{0}=2, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for positive integers $n>1$.
II) The Fibonacci numbers may be defined recursively by: $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for positive integers $n>1$.
III) The Fibonacci numbers may be defined recursively by: $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}-F_{n-2}$ for positive integers $n>1$.
(2) (7 points) The Fibonacci numbers F_{2}, \ldots, F_{7} are: $F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5$, $F_{6}=8, F_{7}=13$. Prove that for any fixed $n \geq 0$:

$$
\sum_{r=0}^{5} F_{n+r}=4 F_{n+4}
$$

Hint: do not use the method of induction.

Solution 5. 1) The correct statement is II.
2) For any fixed $n \geq 0$ we want to show that $\sum_{r=0}^{5} F_{n+r}=4 F_{n+4}$.

$$
\begin{aligned}
\sum_{r=0}^{5} F_{n+r} & =F_{n}+F_{n+1}+F_{n+2}+F_{n+3}+F_{n+4}+F_{n+5} \\
& =\left(F_{n}+F_{n+1}\right)+F_{n+2}+F_{n+3}+F_{n+4}+\left(F_{n+3}+F_{n+4}\right) \\
& =2 F_{n+2}+2 F_{n+3}+2 F_{n+4} \\
& =2\left(F_{n+2}+F_{n+3}\right)+2 F_{n+4} \\
& =2 F_{n+4}+2 F_{n+4} \\
& =4 F_{n+4}
\end{aligned}
$$

Exercise 6. Graphs (15 points)
(1) (3 points) One of the three statements is correct. Which one is it?
I) Let $G=(V, E)$ be an undirected graph (or multigraph). Then $\sum_{v \in V} \operatorname{deg}(v)=$ $|E|$.
II) Let $G=(V, E)$ be an undirected graph (or multigraph). Then $\sum_{v \in V} \operatorname{deg}(v)=$ $2|E|$.
III) Let $G=(V, E)$ be an undirected graph (or multigraph). Then $\sum_{v \in V} \operatorname{deg}(v)=$ $3|E|$.
(2) (3 points) Can you find an undirected graph with 4 vertices of degrees 1, 2, 3, and 3?
(3) (3 points) An undirected graph has vertices of degrees 2, 4, 5, and 11. How many edges does the graph have?
(4) (6 points) Recall that the complete graph K_{N} is an undirected graph with N vertices and an edge between every two vertices. Show that K_{N} has $N(N-1) / 2$ edges.

Solution 6. 1) II is correct.
2) No, such a graph $G=(V, E)$ can not exist, because $\sum_{v \in V} \operatorname{deg}(v)=1+2+3+3=9$, which is an odd number.
3) This graph has $\frac{1}{2} \sum_{v \in V} \operatorname{deg}(v)=\frac{1}{2}(2+4+5+11)=11=|E|$ edges.
4) Each of the N vertices of K_{N} has degree $N-1$. Therefore, $\sum_{v \in V_{K_{N}}} \operatorname{deg}(v)=N(N-1)=2|E|$. This implies that $|E|=N(N-1) / 2$.

