MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2018

EXAM 2

Exercise 1 (Logic):	10 points
Exercise 2 (Relations):	20 points
Exercise 3 (Induction):	30 points
Exercise 4 (Functions):	15 points
Exercise 5 (Fibonacci numbers):	10 points
Exercise 6 (Graphs):	15 points

Total: 100 points

Exercise 1. Logic (10 points)

(1) (4 points) Give the truth table for the statement

 $(p \land (\neg q)) \longrightarrow r$

(2) (6 points) Use the laws of logic to show that $((\neg p) \lor (\neg q)) \land (F_0 \lor p) \land p$ is logically equivalent to $p \land (\neg q)$. Recall that F_0 denotes any contradiction.

<u>So</u>	<u>lution</u>	1.	1)	Truth	table	for	the statem	ent	$(p \land ($	$[\neg q]$)]	$) \longrightarrow r$:
-----------	---------------	----	----	-------	-------	-----	------------	----------------------	--------------	------------	----	-------------------------

			/						
p	q	r	$\neg q$	$p \wedge (\neg q)$	$(p \land (\neg q)) \to r)$				
Т	Т	Т	F	F	Т				
Т	Т	F	F	F	Т				
Т	F	Т	Т	Т	Т				
Т	F	F	Т	Т	\mathbf{F}				
\mathbf{F}	Т	Т	F	F	Т				
\mathbf{F}	Т	F	F	F	Т				
\mathbf{F}	F	Т	Т	F	Т				
\mathbf{F}	F	F	Т	F	Т				
2) Show that $(((\neg p) \lor (\neg q)) \land (F_0 \lor p) \land p) \Leftrightarrow (p \land (\neg q))$									
				((-	$(\neg p) \lor (\neg q) \land (F_0 \lor$	$p) \land p \Leftrightarrow ((\neg p) \lor (\neg q)) \land (p \land p)$			
						$\Leftrightarrow \left((\neg p) \lor (\neg q) \right) \land p$			
						$\Leftrightarrow (\neg p \land p) \lor (\neg q \land p)$			
						$\Leftrightarrow F_0 \vee (\neg q \wedge p)$			
						$\Leftrightarrow (\neg q \land p)$			
						$\Leftrightarrow p \land (\neg q)$			

Date: August 12, 2018.

Exercise 2. Relations (20 points)

(1) (3 points) One of the following definitions is correct. Which one is it?
<u>I</u>) A relation R on a set A is called a partial order, or a partial ordering relation, if R is reflexive, anti-symmetric, and transitive.

 \underline{II}) A relation R on a set A is called a partial order, or a partial ordering relation, if R is anti-reflexive, anti-symmetric, and transitive.

<u>III</u>) A relation R on a set A is called a partial order, or a partial ordering relation, if R is reflexive, symmetric, and transitive.

- (2) (7 points) Define the relation R on the integers Z in the following way: for all $a, b \in \mathbb{Z}$, we have aRb if and only if a + b is an even number. Prove or disprove (by a counterexample) that R is a partial ordering relation.
- (3) (10 points) Define the relation R on the set $S := \{0, 1, 2, 3\}$:

 $R := \{(0,0), (0,2), (1,0), (1,3), (2,2), (3,0), (3,1)\}.$

Draw the directed graph for the relation R. Prove or disprove that this relation is antisymmetric.

<u>Solution</u> 2. 1) \underline{I} is the right definition.

2) R is not a partial ordering relation on \mathbb{Z} . As a counterexample we consider 3+5=8, which is even, and therefore 3R5 and 5R3 but we do not have 5=3, i.e., we have $5 \neq 3$. This implies that R is not anti-symmetric.

3) R is not anti-symmetric, because 3R1 and 1R3 but $1 \neq 3$. See Figure 1.

FIGURE 1. Exercise 2, solution 3)

Exercise 3. Induction (30 points)

(1) (10 points) Use induction to show that for n > 0:

$$\sum_{k=1}^{n} k(k!) = (n+1)! - 1$$

(2) (20 points) Recall the definition of the Lucas numbers, i.e., $L_0 = 2$, $L_1 = 1$, and $L_k = L_{k-1} + L_{k-2}$ for k > 1.

a) (10 points) Use induction to show that for $n \ge 0$:

$$\sum_{r=0}^{n} L_{2r} = L_{2n+1} + 1.$$

b) (10 points) Use induction to show that for $n \ge 0$, L_{3n} is an even number.

Solution 3. 1) Let n = 1: $\sum_{k=1}^{1} k(k!) = 1! = (1+1)! - 1$. We assume that the statement holds for n = k, i.e., $\sum_{j=1}^{k} j(j!) = (k+1)! - 1$. We want to show that it holds for n = k + 1.

$$\sum_{j=1}^{k+1} j(j!) = \sum_{j=1}^{k} j(j!) + (k+1)(k+1)! = (k+1)! - 1 + (k+1)(k+1)! = (k+1)!((k+1)+1) - 1 = (k+2)! - 1.$$

2)a) Let n = 0: $\sum_{r=0}^{0} L_{2r} = L_0 = 2 = L_1 + 1$. We assume that the statement holds for n = k, i.e., $\sum_{j=0}^{k} L_{2j} = L_{2k+1} + 1$. We want to show that it holds for n = k + 1.

$$\sum_{j=0}^{k+1} L_{2j} = \sum_{j=0}^{k} L_{2j} + L_{2k+2} = L_{2k+1} + 1 + L_{2k+2} = L_{2k+3} + 1 = L_{2(k+1)+1} + 1$$

2)b) Let n = 0: $L_0 = 2$. We assume that the statement holds for n = k, i.e., L_{3k} is even. We want to show that it holds for n = k + 1.

$$L_{3k+3} = L_{3k+2} + L_{3k+1} = L_{3k+1} + L_{3k} + L_{3k+1} = 2L_{3k+1} + L_{3k}.$$

This is an even number since L_{3k} is even.

NTNU, SPRING 2018

Exercise 4. Functions (15 points)

(1) (3 points) One of the following definitions is correct. Which one is it? <u>I</u>) A function $f: A \to B$ is called surjective (onto) if $f(A) \subset B$.

<u>II</u>) A function $f: A \to B$ is called surjective (onto) if f(A) = B.

<u>III</u>) A function $f: A \to B$ is called surjective (onto) if for all $a_1, a_2 \in A$, whenever $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

- (2) (5 points) The function $f: \mathbb{Z} \to \mathbb{Z}$ is defined for all integers by f(n) := 4n 1. Prove or disprove (by a counterexample) that f is surjective.
- (3) (7 points) Let $A := \{1, 2, 3, 4\}$ and $B := \{5, 6, 7\}$. Define a function $f : A \to B$ that is surjective but not injective.

Solution 4. 1) II is the correct definition of a surjective function.

- 2) Note that $0 \notin f(\mathbb{Z})$, which implies that $f(\mathbb{Z}) \neq \mathbb{Z}$.
- 3) Define f(1) = 5, f(2) = 6, f(3) = 7, and f(4) = 7.

Exercise 5. Fibonacci numbers (10 points)

(1) (3 points) One of the three statements is correct. Which one is it?

<u>I</u>) The Fibonacci numbers may be defined recursively by: $F_0 = 2$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for positive integers n > 1.

<u>II</u>) The Fibonacci numbers may be defined recursively by: $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for positive integers n > 1.

<u>III</u>) The Fibonacci numbers may be defined recursively by: $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} - F_{n-2}$ for positive integers n > 1.

(2) (7 points) The Fibonacci numbers F_2, \ldots, F_7 are: $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, $F_7 = 13$. Prove that for any fixed $n \ge 0$:

$$\sum_{n=0}^{5} F_{n+r} = 4F_{n+4}.$$

Hint: do <u>not</u> use the method of induction.

Solution 5. 1) The correct statement is \underline{II} .

2) For any fixed $n \ge 0$ we want to show that $\sum_{r=0}^{5} F_{n+r} = 4F_{n+4}$.

$$\sum_{r=0}^{5} F_{n+r} = F_n + F_{n+1} + F_{n+2} + F_{n+3} + F_{n+4} + F_{n+5}$$

= $(F_n + F_{n+1}) + F_{n+2} + F_{n+3} + F_{n+4} + (F_{n+3} + F_{n+4})$
= $2F_{n+2} + 2F_{n+3} + 2F_{n+4}$
= $2(F_{n+2} + F_{n+3}) + 2F_{n+4}$
= $2F_{n+4} + 2F_{n+4}$
= $4F_{n+4}$.

NTNU, SPRING 2018

Exercise 6. Graphs (15 points)

(1) (3 points) One of the three statements is correct. Which one is it?

<u>I</u>) Let G = (V, E) be an undirected graph (or multigraph). Then $\sum_{v \in V} \deg(v) = |E|$.

<u>II</u>) Let G = (V, E) be an undirected graph (or multigraph). Then $\sum_{v \in V} \deg(v) = 2|E|$.

<u>III</u>) Let G = (V, E) be an undirected graph (or multigraph). Then $\sum_{v \in V} \deg(v) = 3|E|$.

- (2) (3 points) Can you find an undirected graph with 4 vertices of degrees 1, 2, 3, and 3?
- (3) (3 points) An undirected graph has vertices of degrees 2, 4, 5, and 11. How many edges does the graph have?
- (4) (6 points) Recall that the complete graph K_N is an undirected graph with N vertices and an edge between every two vertices. Show that K_N has N(N-1)/2 edges.

Solution 6. 1) II is correct.

2) No, such a graph G = (V, E) can not exist, because $\sum_{v \in V} \deg(v) = 1 + 2 + 3 + 3 = 9$, which is an odd number.

3) This graph has $\frac{1}{2} \sum_{v \in V} \deg(v) = \frac{1}{2}(2+4+5+11) = 11 = |E|$ edges.

4) Each of the N vertices of K_N has degree N-1. Therefore, $\sum_{v \in V_{K_N}} \deg(v) = N(N-1) = 2|E|$. This implies that |E| = N(N-1)/2.