- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for
 MA0301 Elementary discrete mathematics

Academic contact during examination: Kurusch Ebrahimi-Fard
Phone: 96911985

Examination date: 24 May 2018
Examination time (from-to): 09:00-13:00
Permitted examination support material: D: No printed or hand-written support material is allowed. A specific basic calculator is allowed.

Language: English
Number of pages: 5
Number of pages enclosed: 0Date
Checked by:
skal ha flervalgskjema

Exercise 1 (Sets):	10 points
Exercise 2 (Relations):	20 points
Exercise 3 (Induction):	20 points
Exercise 4 (Functions):	15 points
Exercise 5 (Boolean algebra):	10 points
Exercise 6 (Languages and finite state automata):	10 points
Exercise 7 (Graphs):	15 points

Note: In each of 1.1, 2.1, 4.1, and 7.1, at least one and possibly several of the alternatives are correct.

Problem 1 Sets (10 points)

1. (3 points) Which of the three statements is/are correct?
I) Let $A=\{1,2,3,4,5,6,7\}$. $|\mathcal{P}(A)|=128$.
II) The set $A=\{1,2,3,4,5,6,7\}$ has 127 nonempty subsets.
III) The set $A=\{1,2,3,4,5,6,7\}$ has 127 proper subsets.
2. (7 points) Let A, B be two sets. We assume that $(A \times A)=(B \times B)$. Show that $A=B$.

Recall that the cartesian product of two arbitrary sets X and Y is $X \times Y:=\{(x, y) \mid x \in$ $X, y \in Y\}$.

Problem 2 Relations (20 points)

1. (3 points) Which of the three statements is/are correct?
I) A relation R on a set A is an equivalence relation if and only if R is reflexive, anti-symmetric, and transitive.
II) A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric, and transitive.
III) A relation R on a set A is an equivalence relation if and only if R is anti-reflexive, symmetric, and transitive.
2. (5 points) Let $A:=\{1,2,3,4\}$. Define the relation

$$
R=\{(1,1),(2,2),(3,4),(3,3),(4,4)\} .
$$

Prove or disprove that R is an equivalence relation.
3. (6 points) We define the following relation R on $\mathbb{N} \times \mathbb{N}:(a, b) R(x, y)$ if and only if $a y=b x$. Show that R is an equivalence relation.
4. (6 points) Consider the "divides" relation on the set $A=\{1,2,4,5,10,15,20\}$, i.e., $x R y$ if and only if x divides y (that is, $y=z x$ for some $z \in \mathbb{Z}$). Draw the Hasse diagram.

Problem 3 Induction (20 points)

1. (8 points) Use induction to show that

$$
\sum_{k=1}^{n} k(k-1)(k-2)=\frac{1}{4}(n+1) n(n-1)(n-2) .
$$

2. (12 points) Recall that the Lucas numbers are defined recursively, $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$, for $n>1$. Show by induction that for $n>0$,

$$
\sum_{i=1}^{n} i L_{i}=n L_{n+2}-L_{n+3}+4
$$

Problem 4 Functions (15 points)

1. (3 points) Which of the three statements is/are correct?
I) A function $f: A \rightarrow B$ is injective if and only if each element of B appears at most once as the image of an element of A.
II) A function $f: A \rightarrow B$ is injective if and only if for all $a_{1}, a_{2} \in A$, $a_{1}=a_{2} \Rightarrow f\left(a_{1}\right)=f\left(a_{2}\right)$.
III) A function $f: A \rightarrow B$ is injective if and only if for all $a_{1}, a_{2} \in A$, $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$.
2. (5 points) Define the function $f(x):=\frac{x+1}{x-1}$ with domain $\mathbb{R}-\{1\}$ and codomain $\mathbb{R}-\{1\}$. Calculate $(f \circ f)(x)$ and draw a conclusion.
3. (7 points) The function $f(x)=\frac{x}{x^{2}+1}$ is defined on \mathbb{R}. Prove or disprove that f is injective.

Problem 5 Boolean algebra (10 points)

1. (5 points) Use Boolean algebra to simplify the expression

$$
V=\bar{x} \bar{y} z+x \bar{y} \bar{z}+x \bar{y} z+x y \bar{z}+x y z .
$$

(Hint: The identity $a \bar{b}+a=b+a$ may be helpful.)
2. (5 points) Use Boolean algebra to simplify the expression

$$
W=(x+y+\bar{z})(\bar{x}+y+z)(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z}) .
$$

Figure 1: The automaton A.

Problem 6 Languages and finite state automata (10 points)

1. (5 points) Let $\Sigma:=\{0,1\}$ be an alphabet. Find a regular expression that defines the language $L \subset \Sigma^{*}$ consisting of all strings of 0 's and 1's with an odd number of 1's.
2. (5 points) i) What is the state table $T(A)$ for the automaton A in Figure 1?
ii) Determine the arrival state for each of the input sequences
a) 01
b) 0011
c) 010101
iii) What is the language $L(A)$ accepted by A ?

Problem 7 Graphs (15 points)

1. (3 points) Which of the three statements is/are correct?
I) Let $G=(V, E)$ be a loop-free connected planar graph with $|V|=v$, $|E|=e>2$, and r regions. Then $3 r \leq 2 e$ and $e \leq 3 v-6$.
II) Let $G=(V, E)$ be a loop-free connected planar graph with $|V|=v$, $|E|=e>2$, and r regions. Then $3 r \leq 2 e$ and $e \leq 3 v+6$.
III) Let $G=(V, E)$ be a loop-free connected planar graph with $|V|=v$, $|E|=e>2$, and r regions. Then $3 r \geq 2 e$ and $e \geq 3 v+6$.
2. (6 points) If $G=(V, E)$ is connected graph with $|E|=17$ and $\operatorname{deg}(v)>2$ for all $v \in V$, what is the maximum value of $|V|$?
3. (6 points) Let $G=(V, E)$ be an undirected connected loop-free graph. Suppose that G is planar and determines $r=53$ regions. If for some planar embedding of G, each region has at least five edges in its boundary, show that $|V|>81$.
