

Norwegian University of Science and Technology

Department of Mathematical Sciences

sort/hvit ⊠

skal ha flervalgskjema

farger □

Examination paper for	
MA0301 Elementary discrete	e mathematics
Academic contact during examination: K	úrusch Ebrahimi-Fard
Phone: 9691 1985	
Examination date: 24 May 2018	
Examination time (from-to): 09:00-13:00	
Permitted examination support material: allowed. A specific basic calculator is allowed.	D: No printed or hand-written support material is ed.
Language: English	
Number of pages: 5	
Number of pages enclosed: 0	
	Oh a also d hou
Informasjon om trykking av eksamensoppgave	Checked by:
Originalen er:	
1-sidig □ 2-sidig ⊠	

Signature

Date

Exercise 1 (Sets):	10 points
Exercise 2 (Relations):	20 points
Exercise 3 (Induction):	20 points
Exercise 4 (Functions):	15 points
Exercise 5 (Boolean algebra):	10 points
Exercise 6 (Languages and finite state automata):	10 points
Exercise 7 (Graphs):	15 points

Note: In each of 1.1, 2.1, 4.1, and 7.1, at least one and possibly several of the alternatives are correct.

Problem 1 Sets (10 points)

1. (3 points) Which of the three statements is/are correct?

I) Let
$$A = \{1, 2, 3, 4, 5, 6, 7\}$$
. $|\mathcal{P}(A)| = 128$.

- $\underline{\text{II}}$) The set $A = \{1, 2, 3, 4, 5, 6, 7\}$ has 127 nonempty subsets.
- <u>III</u>) The set $A = \{1, 2, 3, 4, 5, 6, 7\}$ has 127 proper subsets.
- 2. (7 points) Let A, B be two sets. We assume that $(A \times A) = (B \times B)$. Show that A = B.

Recall that the cartesian product of two arbitrary sets X and Y is $X \times Y := \{(x, y) | x \in X, y \in Y\}$.

Problem 2 Relations (20 points)

- 1. (3 points) Which of the three statements is/are correct?
 - $\underline{\mathbf{I}}$) A relation R on a set A is an equivalence relation if and only if R is reflexive, anti-symmetric, and transitive.

- $\underline{\text{II}}$) A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric, and transitive.
- $\underline{\text{III}}$) A relation R on a set A is an equivalence relation if and only if R is anti-reflexive, symmetric, and transitive.
- 2. **(5 points)** Let $A := \{1, 2, 3, 4\}$. Define the relation

$$R = \{(1,1), (2,2), (3,4), (3,3), (4,4)\}.$$

Prove or disprove that R is an equivalence relation.

- 3. (6 points) We define the following relation R on $\mathbb{N} \times \mathbb{N}$: (a,b)R(x,y) if and only if ay = bx. Show that R is an equivalence relation.
- 4. (6 points) Consider the "divides" relation on the set $A = \{1, 2, 4, 5, 10, 15, 20\}$, i.e., xRy if and only if x divides y (that is, y = zx for some $z \in \mathbb{Z}$). Draw the Hasse diagram.

Problem 3 Induction (20 points)

1. (8 points) Use induction to show that

$$\sum_{k=1}^{n} k(k-1)(k-2) = \frac{1}{4}(n+1)n(n-1)(n-2).$$

2. (12 points) Recall that the Lucas numbers are defined recursively, $L_0 = 2$, $L_1 = 1$, and $L_n = L_{n-1} + L_{n-2}$, for n > 1. Show by induction that for n > 0,

$$\sum_{i=1}^{n} iL_i = nL_{n+2} - L_{n+3} + 4.$$

Problem 4 Functions (15 points)

- 1. (3 points) Which of the three statements is/are correct?
 - <u>I</u>) A function $f: A \to B$ is injective if and only if each element of B appears at most once as the image of an element of A.
 - <u>II</u>) A function $f: A \to B$ is injective if and only if for all $a_1, a_2 \in A$, $a_1 = a_2 \Rightarrow f(a_1) = f(a_2)$.
 - $\underline{\text{III}}$) A function $f: A \to B$ is injective if and only if for all $a_1, a_2 \in A$, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- 2. **(5 points)** Define the function $f(x) := \frac{x+1}{x-1}$ with domain $\mathbb{R} \{1\}$ and codomain $\mathbb{R} \{1\}$. Calculate $(f \circ f)(x)$ and draw a conclusion.
- 3. (7 points) The function $f(x) = \frac{x}{x^2+1}$ is defined on \mathbb{R} . Prove or disprove that f is injective.

Problem 5 Boolean algebra (10 points)

1. (5 points) Use Boolean algebra to simplify the expression

$$V = \bar{x}\bar{y}z + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z} + xyz.$$

(Hint: The identity $a\bar{b} + a = b + a$ may be helpful.)

2. (5 points) Use Boolean algebra to simplify the expression

$$W = (x + y + \bar{z})(\bar{x} + y + z)(\bar{x} + y + \bar{z})(\bar{x} + \bar{y} + z)(\bar{x} + \bar{y} + \bar{z}).$$

Figure 1: The automaton A.

Problem 6 Languages and finite state automata (10 points)

- 1. (5 points) Let $\Sigma := \{0, 1\}$ be an alphabet. Find a regular expression that defines the language $L \subset \Sigma^*$ consisting of all strings of 0's and 1's with an odd number of 1's.
- 2. (5 points) i) What is the state table T(A) for the automaton A in Figure 1?
 - ii) Determine the arrival state for each of the input sequences

iii) What is the language L(A) accepted by A?

Problem 7 Graphs (15 points)

1. (3 points) Which of the three statements is/are correct?

I) Let
$$G = (V, E)$$
 be a loop-free connected planar graph with $|V| = v$, $|E| = e > 2$, and r regions. Then $3r \le 2e$ and $e \le 3v - 6$.

II) Let
$$G = (V, E)$$
 be a loop-free connected planar graph with $|V| = v$, $|E| = e > 2$, and r regions. Then $3r \le 2e$ and $e \le 3v + 6$.

III) Let
$$G = (V, E)$$
 be a loop-free connected planar graph with $|V| = v$, $|E| = e > 2$, and r regions. Then $3r \ge 2e$ and $e \ge 3v + 6$.

- 2. (6 points) If G = (V, E) is connected graph with |E| = 17 and $\deg(v) > 2$ for all $v \in V$, what is the maximum value of |V|?
- 3. (6 points) Let G = (V, E) be an undirected connected loop-free graph. Suppose that G is planar and determines r = 53 regions. If for some planar embedding of G, each region has at least five edges in its boundary, show that |V| > 81.