- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for
 MA0301 Elementary discrete mathematics

Academic contact during examination: Kurusch Ebrahimi-Fard
Phone: 96911985

Examination date: 24 May 2018
Examination time (from-to): 09:00-13:00
Permitted examination support material: D: No printed or hand-written support material is allowed. A specific basic calculator is allowed.

Language: English
Number of pages: 7
Number of pages enclosed: 0Date
Checked by:
skal ha flervalgskjema

Exercise 1 (Sets):	10 points
Exercise 2 (Relations):	20 points
Exercise 3 (Induction):	20 points
Exercise 4 (Functions):	15 points
Exercise 5 (Boolean algebra):	10 points
Exercise 6 (Languages and finite state automata):	10 points
Exercise 7 (Graphs):	15 points

Note: In each of 1.1, 2.1, 4.1, and 7.1, at least one and possibly several of the alternatives are correct.

Problem 1 Sets (10 points)

1. (3 points) Which of the three statements is/are correct?
I) Let $A=\{1,2,3,4,5,6,7\}$. $|\mathcal{P}(A)|=128$.
II) The set $A=\{1,2,3,4,5,6,7\}$ has 127 nonempty subsets.
III) The set $A=\{1,2,3,4,5,6,7\}$ has 127 proper subsets.
2. (7 points) Let A, B be two sets. We assume that $(A \times A)=(B \times B)$. Show that $A=B$.

Recall that the cartesian product of two arbitrary sets X and Y is $X \times Y:=\{(x, y) \mid x \in$ $X, y \in Y\}$.

Solution 1 1) All three statements, i.e., I), II), and III), are true.
2) We work with the assumption that $(A \times A)=(B \times B)$ and want to show that $A=B$, i.e., $A \subseteq B$ and $B \subseteq A$. Let $x \in A$ then $(x, x) \in A \times A$ By assumption this implies that $(x, x) \in B \times B$. Therefore $x \in B$ and $A \subseteq B$. The other direction works completely analogously.

Problem 2 Relations (20 points)

1. (3 points) Which of the three statements is/are correct?
I) A relation R on a set A is an equivalence relation if and only if R is reflexive, anti-symmetric, and transitive.
II) A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric, and transitive.
III) A relation R on a set A is an equivalence relation if and only if R is anti-reflexive, symmetric, and transitive.
2. (5 points) Let $A:=\{1,2,3,4\}$. Define the relation

$$
R=\{(1,1),(2,2),(3,4),(3,3),(4,4)\} .
$$

Prove or disprove that R is an equivalence relation.
3. (6 points) We define the following relation R on $\mathbb{N} \times \mathbb{N}:(a, b) R(x, y)$ if and only if $a y=b x$. Show that R is an equivalence relation.
4. (6 points) Consider the "divides" relation on the set $A=\{1,2,4,5,10,15,20\}$, i.e., $x R y$ if and only if x divides y (that is, $y=z x$ for some $z \in \mathbb{Z}$). Draw the Hasse diagram.

Solution 2 1) II) is correct.
2) R is reflexive and transitive, but not symmetric, as $(3,4)$ is included, while $(4,3)$ is not.
3) R is reflexive: for $(x, y) \in \mathbb{N} \times \mathbb{N}$, we have that $(x, y) R(x, y)$, as $x y=y x$.
R is symmetric: assume that $(x, y) R(u, v)$. Then $x v=y u$, which is the same as $u y=v x$. This implies that $(u, v) R(x, y)$.
R is transitive: assume that $(u, v) R(x, y)$ and $(x, y) R(a, b)$. That means that $u y=v x$ and $x b=y a$. Therefore, $u y x b=v x y a$, and this implies that $u b=v a$, i.e., $(u, v) R(a, b)$.
4)

Problem 3 Induction (20 points)

1. (8 points) Use induction to show that

$$
\sum_{k=1}^{n} k(k-1)(k-2)=\frac{1}{4}(n+1) n(n-1)(n-2) .
$$

2. (12 points) Recall that the Lucas numbers are defined recursively, $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$, for $n>1$. Show by induction that for $n>0$,

$$
\sum_{i=1}^{n} i L_{i}=n L_{n+2}-L_{n+3}+4
$$

Solution 3 1) Basis step: $n=1$: on the left-hand side we have zero; on the right-hand side we also have zero. Induction hypothesis: we have for $i>0$ that $\sum_{k=1}^{i} k(k-1)(k-2)=\frac{1}{4}(i+1) i(i-1)(i-2)$. Induction step:

$$
\begin{aligned}
\sum_{k=1}^{i+1} k(k-1)(k-2) & =\sum_{k=1}^{i} k(k-1)(k-2)+(i+1) i(i-1) \\
& =\frac{1}{4}(i+1) i(i-1)(i-2)+(i+1) i(i-1) \\
& =\frac{1}{4}(i+1) i(i-1)(i-2+4) \\
& =\frac{1}{4}(i+1) i(i-1)(i+2),
\end{aligned}
$$

which is what we wanted to show.
2) Basis step: $n=1$: we have on the left-hand side $1 L_{1}=1$; on the right-hand side we have $1 L_{3}-L_{4}+4=4-7+4=1$. Induction hypothesis: we have for $k>0$ that $\sum_{i=1}^{k} i L_{i}=$ $k L_{k+2}-L_{k+3}+4$.. For $k+1$ we get

$$
\begin{aligned}
\sum_{i=1}^{k+1} i L_{i} & =\sum_{i=1}^{k} i L_{i}+(k+1) L_{k+1} \\
& =k L_{k+2}-L_{k+3}+4+(k+1) L_{k+1} . \\
& =(k+1) L_{k+2}-L_{k+2}-L_{k+3}+4+(k+1) L_{k+1} \\
& =(k+1) L_{k+2}+(k+1) L_{k+1}-L_{k+2}-L_{k+3}+4 \\
& =(k+1)\left(L_{k+2}+L_{k+1}\right)-\left(L_{k+2}+L_{k+3}\right)+4 \\
& =(k+1) L_{k+3}-L_{k+4}+4 \\
& =(k+1) L_{(k+1)+2}-L_{(k+1)+3}+4
\end{aligned}
$$

Problem 4 Functions (15 points)

1. (3 points) Which of the three statements is/are correct?
I) A function $f: A \rightarrow B$ is injective if and only if each element of B appears at most once as the image of an element of A.
II) A function $f: A \rightarrow B$ is injective if and only if for all $a_{1}, a_{2} \in A$, $a_{1}=a_{2} \Rightarrow f\left(a_{1}\right)=f\left(a_{2}\right)$.
III) A function $f: A \rightarrow B$ is injective if and only if for all $a_{1}, a_{2} \in A$, $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$.
2. (5 points) Define the function $f(x):=\frac{x+1}{x-1}$ with domain $\mathbb{R}-\{1\}$ and codomain $\mathbb{R}-\{1\}$. Calculate $(f \circ f)(x)$ and draw a conclusion.
3. (7 points) The function $f(x)=\frac{x}{x^{2}+1}$ is defined on \mathbb{R}. Prove or disprove that f is injective.

Solution 4 1) I) and III) are correct. $a_{1}=a_{2} \Rightarrow f\left(a_{1}\right)=f\left(a_{2}\right)$ holds for all functions f.
2)

$$
\begin{aligned}
(f \circ f)(x) & =\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} \\
& =\frac{\frac{2 x}{x-1}}{\frac{2}{x-1}}=x
\end{aligned}
$$

The composition of the function with itself gives the identity, i.e., it is its own inverse.
3) The function is not injective. Indeed, note that

$$
f\left(x_{1}\right)=\frac{x_{1}}{x_{1}^{2}+1}=f\left(x_{2}\right)=\frac{x_{2}}{x_{2}^{2}+1}
$$

implies that $x_{1} x_{2}^{2}+x_{1}=x_{2} x_{1}^{2}+x_{2}$ and this implies that $x_{1} x_{2}\left(x_{1}-x_{2}\right)=x_{1}-x_{2}$. The latter tells us that either $x_{1}=x_{2}$ or $x_{1} x_{2}=1$. We try choosing x_{1} different from x_{2}, but $x_{1} x_{2}=1$, e.g. $x_{1}=4$ and $x_{2}=1 / 4$. This gives a counterexample, as $f(4)=4 / 17=f(1 / 4)$.

Problem 5 Boolean algebra (10 points)

1. (5 points) Use Boolean algebra to simplify the expression

$$
V=\bar{x} \bar{y} z+x \bar{y} \bar{z}+x \bar{y} z+x y \bar{z}+x y z .
$$

(Hint: The identity $a \bar{b}+a=b+a$ may be helpful.)
2. (5 points) Use Boolean algebra to simplify the expression

$$
W=(x+y+\bar{z})(\bar{x}+y+z)(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z}) .
$$

Solution 5 1)

$$
\begin{aligned}
V & =\bar{x} \bar{y} z+x \bar{y} \bar{z}+x \bar{y} z+x y \bar{z}+x y z \\
& =\bar{x} \bar{y} z+x \bar{y}(\bar{z}+z)+x y(\bar{z}+z) \\
& =\bar{x} \bar{y} z+x \bar{y}+x y \\
& =\bar{x} \bar{y} z+x(\bar{y}+y) \\
& =\bar{x} \bar{y} z+x \\
& =\bar{y} z+x .
\end{aligned}
$$

3) $W=\bar{V}=(y+\bar{z}) x$.

Problem 6 Languages and finite state automata (10 points)

1. (5 points) Let $\Sigma:=\{0,1\}$ be an alphabet. Find a regular expression that defines the language $L \subset \Sigma^{*}$ consisting of all strings of 0 's and 1 's with an odd number of 1 's.
2. (5 points) i) What is the state table $T(A)$ for the automaton A in Figure 1?

Figure 1: The automaton A.
ii) Determine the arrival state for each of the input sequences
a) 01
b) 0011
c) 010101
iii) What is the language $L(A)$ accepted by A ?

Solution 6 1) $0^{*} 10^{*}\left(0^{*} 10^{*} 10^{*}\right)^{*}$
2) i)

A	ν	
	0	1
s_{0}	s_{1}	s_{0}
s_{1}	s_{1}	s_{2}
s_{2}	s_{1}	s_{0}

ii) s_{2}, s_{0}, s_{2}
iii) All strings that end in 01 .

Problem 7 Graphs (15 points)

1. (3 points) Which of the three statements is/are correct?
I) Let $G=(V, E)$ be a loop-free connected planar graph with $|V|=v$, $|E|=e>2$, and r regions. Then $3 r \leq 2 e$ and $e \leq 3 v-6$.
II) Let $G=(V, E)$ be a loop-free connected planar graph with $|V|=v$, $|E|=e>2$, and r regions. Then $3 r \leq 2 e$ and $e \leq 3 v+6$.
III) Let $G=(V, E)$ be a loop-free connected planar graph with $|V|=v$, $|E|=e>2$, and r regions. Then $3 r \geq 2 e$ and $e \geq 3 v+6$.
2. (6 points) If $G=(V, E)$ is connected graph with $|E|=17$ and $\operatorname{deg}(v)>2$ for all $v \in V$, what is the maximum value of $|V|$?
3. (6 points) Let $G=(V, E)$ be an undirected connected loop-free graph. Suppose that G is planar and determines $r=53$ regions. If for some planar embedding of G, each region has at least five edges in its boundary, show that $|V|>81$.

Solution 7 1) I) and II) are correct.
2) $2|E|=34=\sum_{v \in V} \operatorname{deg}(v) \geq 3|V|$. Therefore, the maximum value of $|V|$ is at most 11. The graph below shows that this value is attainable, so it is indeed the maximum.

3) We have $r=53$ regions and we know that each region has at least five edges in its boundary. Therefore $2|E|>5 \cdot 53$. We also know that $|V|=|E|-53+2$. Therefore $|E|-51 \geq \frac{1}{2} \cdot 5 \cdot 53-51=$ $\frac{265-102}{2}=\frac{163}{2}=81.5$. This implies that $|V|>81$.

