MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

Exam 2

Exercise 1 (Logic):
Exercise 2 (Relations):
Exercise 3 (Induction):
Exercise 4 (Functions):
Exercise 5 (Combinatorics):
Exercise 6 (Boolean algebra):
Exercise 7 (Finite state machines) 10 points

Total: 100 points

Note: In each of the exercises 1.1, 2.1, 4.1, 5.1, exactly one answer is correct.

Exercise 1. Logic (15 points)
(1) (3 points)

Which of the three statements is correct?
I) The negation of $\exists x \forall y(p(x, y) \rightarrow q(x, y))$ is $\forall x \exists y(p(x, y) \wedge \neg q(x, y))$.
II) The negation of $\exists x \forall y(p(x, y) \rightarrow q(x, y))$ is $\forall x \exists y(p(x, y) \vee \neg q(x, y))$.
III) The negation of $\exists x \forall y(p(x, y) \rightarrow q(x, y))$ is $\forall x \exists y(\neg p(x, y) \wedge q(x, y))$.
(2) (5 points) Show that $(p \wedge q) \wedge \neg(p \vee q)$ is a contradiction by constructing its truth table.
(3) (7 points) Use the laws of logic only to show that $\neg(p \vee q) \vee(\neg p \wedge q) \equiv \neg p$

Solution 1. 1) I is correct.

p	q	$p \wedge q$	$p \vee q$	$\neg(p \vee q)$	$(p \wedge q) \wedge \neg(p \vee q)$
T	T	T	T	F	F
T	F	F	T	F	F
F	T	F	T	F	F
F	F	F	F	T	F

Date: June 27, 2019.
3)

$$
\begin{aligned}
\neg(p \vee q) \vee(\neg p \wedge q) & \equiv(\neg p \wedge \neg q) \vee(\neg p \wedge q) \\
& \equiv \neg p \wedge(\neg q \vee q) \\
& \equiv \neg p \wedge T \\
& \equiv \neg p
\end{aligned}
$$

Exercise 2. Relations (15 points)
(1) (3 points) Let $A=\{2,4,6,12,20\}$ be ordered by divisibility. Which of the three statements is correct?
I) The minimal and maximal elements are 2, 6 respectively 20 .
II) The minimal and maximal elements are 2 respectively 12, 20.
III) The minimal and maximal elements are 2, 4 respectively 20.
(2) (5 points) a) Draw the directed graph of the relation R on $A=\{2,3,4,6,9\}$ defined by

$$
T=\{(2,3),(2,9),(3,2),(3,4),(4,3),(4,9),(9,2),(9,4)\}
$$

(3) (7 points) Let $A=\{1,2,3,4,5,6\}$. Let R be the equivalence relation defined on A b:
$R=\{(1,1),(1,5),(2,2),(2,3),(2,6),(3,2),(3,3),(3,6),(4,4),(5,1),(5,5),(6,2),(6,3),(6,6)\}$
Determine the partition of A induced by R.
Solution 2. 1) II) is correct.
2)

3) $\{\{1,5\},\{2,3,6\},\{4\}\}$ is the partition of A induced by R.

Exercise 3. Induction (20 points)
(1) (8 points) Show that

$$
\sum_{k=1}^{n}(3 k-2)=\frac{n(3 n-1)}{2}
$$

(2) (12 points) First, show by induction that $n^{2} \geq 2 n+1$ for $n>2$. Use this result to determine by induction for which natural numbers we have that $2^{n} \geq n^{2}$.

Solution 3. 1) Base step: $n=1: 3-2=1=\frac{3-1}{2}$. Ind. hyp.: Assuming the statement is true for $k>0$.

$$
\sum_{k=1}^{n+1}(3 k-2)=\frac{n(3 n-1)}{2}+(3 n+1)=\frac{n(3 n-1)+2(3 n+1)}{2}=\frac{(n+1)(3 n+2)}{2}=\frac{(n+1)(3(n+1)-1)}{2}
$$

2) Check that $3^{2}=9 \geq 6+1=7$. Hence, the formula holds for $n=3$. Assume that it is true for $n>2$, we check that $(n+1)^{2}=n^{2}+2 n+1 \geq 2 n+1+2 n+1=2 n+2+2 n \geq 2 n+2+1=2(n+1)+1$. Thus the statements holds for $n+1$.

Now, we move to the second statement. Check that for $n=2$, we have $2^{2}=2^{2}$, but for $n=3$, we have $2^{3}=8<3^{2}=9$, which violates the statement we want to prove. So, we look for $n=4$ as base step, i.e., $16=4^{2}$ (for $n=5$ we have $2^{5}=32 \geq 5^{2}=25$ and for $n=6$ we have $2^{6}=64 \geq 36$). Assume that the statement holds for $n>3$. For $2^{n+1}=22^{n} \geq 2 n^{2}=n^{2}+n^{2} \geq n^{2}+2 n+1=(n+1)^{3}$. Hence, by induction we have that the statement is correct.

Exercise 4. Functions (15 points)

(1) (3 points) Which of the three statements is correct?
I) The only solution of the equation $(n!)!=(2 n)!$ is $n=1$.
II) The equation ($n!$)! $=(2 n)$! holds for all $n \geq 4$.
III) $n=0$ and $n=3$ are all solutions of the equation $(n!)!=(2 n)!$.
(2) (5 points) Given $f: A \rightarrow B$ and $g: B \rightarrow C$. Show that if $g \circ f: A \rightarrow C$ is surjective, then g is surjective.
(3) (7 points) Let S be a set and let $P=\left\{A_{1}, \ldots, A_{k}\right\}$ a partition of S. Since P is a partition of S we know that for each element $s \in S$ there exists a unique index $1 \leq j \leq k$ such that s is in $A_{j} \in P$. We define the map $f: S \rightarrow P$ by $f(s)=A_{j}$ if $s \in A_{j}$. Show that f is surjective.

Solution 4. 1) III) is correct.
2) Let $a \in A$, then $g \circ f(a)=g(f(a))$ is in the image of g. Suppose that g is not surjective. Then the image of g is a proper subset of C and therefore the image of $g \circ f$ is a proper subset of C. The latter implies that $g \circ f$ is not surjective. Hence, we must have that g is surjective.
3) Choose an $A_{i} \in P$. As A_{i} is not empty there must exist an element $s \in S$ such that $s \in A_{i}$. Therefore $f(s)=A_{i}$. Hence, f is surjective.

Exercise 5. Combinatorics (15 points)

(1) (3 points) Let $p_{1}, p_{2}, \ldots, p_{12}$ be twelve given points in the plane. Suppose that no three of the points are on the same line. How many triangles, having vertices among the points $p_{1}, p_{2}, \ldots, p_{12}$ and one of which is p_{1}, are there?

Which one of the three statements is correct?
I) 220 .
II) 55 .
III) 165 .
(2) (4 points) Find the number of distinct permutations that can be formed from all the letters in the word RADAR.
(3) (8 points) We define the Narayana numbers:

$$
\begin{aligned}
N(0,0) & =1 \\
N(n, 0) & =0, n>0 \\
N(n, k) & =\frac{1}{n}\binom{n}{k}\binom{n}{k-1} \\
& =\frac{1}{n} \frac{n!}{k!(n-k)!} \frac{n!}{(k-1)!(n-k+1)!}, n \geq k \geq 1 .
\end{aligned}
$$

Show that

$$
N(n, n+1-k)=N(n, k) .
$$

Solution 5. 1) II
2) There are $30=5!/(2!2!)$, because there are five letters of which two are R and two are A.
3)

$$
\begin{aligned}
N(n, n+1-k) & =\frac{1}{n}\binom{n}{n+1-k}\binom{n}{n+1-k-1} \\
& =\frac{1}{n}\binom{n}{n+1-k}\binom{n}{n-k} \\
& =\frac{1}{n}\binom{n}{k-1}\binom{n}{n-k} \\
& =\frac{1}{n}\binom{n}{n-k}\binom{n}{k-1} \\
& =\frac{1}{n}\binom{n}{k}\binom{n}{k-1}=N(n, k)
\end{aligned}
$$

Exercise 6. Boolean algebra (10 points)

(1) (5 points) Let B be a Boolean algebra. Show, using only the axioms of Boolean algebra (i.e., do not use any tables or alike), that for any elements $a, b \in B$ we have i) $\overline{a+b}=\bar{a} \cdot \bar{b}$ and $i i) ~ \overline{a \cdot b}=\bar{a}+\bar{b}$.
(2) (5 points) Let B be a Boolean algebra and let a, b be any elements in B. Show, using only the axioms of Boolean algebra (i.e., do not use any tables or alike), that $\bar{a}+b=1$ is equivalent to $a \cdot \bar{b}=0$.

Solution 6. 1) i) We must show that $(a+b)+\bar{a} \cdot \bar{b}=1$ and $(a+b) \cdot(\bar{a} \cdot \bar{b})=0$. Uniqueness of complement then says that $\overline{a+b}=\bar{a} \cdot \bar{b}$.

$$
\begin{aligned}
& (a+b)+\bar{a} \cdot \bar{b}=b+(a+\bar{a}) \cdot(a+\bar{b})=b+1 \cdot(a+\bar{b})=b+a+\bar{b}=1+a=1 . \\
& (a+b) \cdot(\bar{a} \cdot \bar{b})=((a+b) \cdot \bar{a}) \cdot \bar{b}=((a \cdot \bar{a})+(b \cdot \bar{a})) \cdot \bar{b}=(0+(b \cdot \bar{a})) \cdot \bar{b}=(b \cdot \bar{a}) \cdot \bar{b}=(b \cdot \bar{b}) \cdot \bar{a}=0 \cdot \bar{a}=0
\end{aligned}
$$

ii) $\overline{a \cdot b}=\bar{a}+\bar{b}$ follows similarly (or by duality).
2) Start by assuming that $\bar{a}+b=1$ holds. Then $0=\overline{1}=\overline{(\bar{a}+b)}=\overline{\bar{a}} \cdot \bar{b}=a \cdot \bar{b}$.

Now we assume that $0=a \cdot \bar{b}$ is true. Then $1=\overline{0}=\overline{(a \cdot \bar{b})}=\bar{a}+\overline{\bar{b}}=\bar{a} \cdot b$.

Exercise 7. Finite state machines (10 points)
(1) (4 points) Draw the state diagram of the finite state machine N corresponding to the transition table

N	ν		ω	
	0	1	0	1
s_{0}	s_{0}	s_{1}	0	0
s_{1}	s_{1}	s_{2}	0	0
s_{2}	s_{2}	s_{3}	0	0
s_{3}	s_{3}	s_{4}	0	0
s_{4}	s_{4}	s_{5}	0	0
s_{5}	s_{5}	s_{0}	0	1

What is the output corresponding to the input sequence 0110111011?
(2) (6 points) Given two states s_{0}, s_{1}, complete the following diagram by adding arrows:

so that it becomes a state diagram of the finite state machine M, which is supposed to recognise (with an output 1) every 0 appearing in an input string x that is preceded by another 0 .

Solution 7. 1)

Figure 1. The finite state machine N.
Output: 0000000010
2)

Figure 2. The finite state machine M.

