MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

EXAM 2

Exercise 1 (Logic):	15 points
Exercise 2 (Relations):	15 points
Exercise 3 (Induction):	20 points
Exercise 4 (Functions):	15 points
Exercise 5 (Combinatorics):	15 points
Exercise 6 (Boolean algebra):	10 points
Exercise 7 (Finite state machines)	10 points
Exercise 7 (Finite state machines)	10 points

Total: 100 points

Note: In each of the exercises 1.1, 2.1, 4.1, 5.1, exactly one answer is correct.

Exercise 1. Logic (15 points)

(1) **(3 points)**

Which of the three statements is correct? <u>I</u>) The negation of $\exists x \forall y (p(x, y) \rightarrow q(x, y))$ is $\forall x \exists y (p(x, y) \land \neg q(x, y))$. <u>II</u>) The negation of $\exists x \forall y (p(x, y) \rightarrow q(x, y))$ is $\forall x \exists y (p(x, y) \lor \neg q(x, y))$. <u>III</u>) The negation of $\exists x \forall y (p(x, y) \rightarrow q(x, y))$ is $\forall x \exists y (\neg p(x, y) \land q(x, y))$.

(2) (5 points) Show that $(p \land q) \land \neg (p \lor q)$ is a contradiction by constructing its truth table.

(3) (7 points) Use the laws of logic only to show that $\neg(p \lor q) \lor (\neg p \land q) \equiv \neg p$

<u>Solution</u> 1. 1) \underline{I} is correct.

	p	q	$p \wedge q$	$p \lor q$	$\neg (p \lor q)$	$(p \wedge q) \wedge \neg (p \vee q)$
	Т	Т	Т	Т	F	F
2)	Т	\mathbf{F}	F	Т	F	F
	\mathbf{F}	Т	F	Т	F	F
	F	F	F	F	Т	\mathbf{F}

Date: June 27, 2019.

3)

$$\neg (p \lor q) \lor (\neg p \land q) \equiv (\neg p \land \neg q) \lor (\neg p \land q)$$
$$\equiv \neg p \land (\neg q \lor q)$$
$$\equiv \neg p \land T$$
$$\equiv \neg p$$

Exercise 2. Relations (15 points)

(1) (3 points) Let $A = \{2, 4, 6, 12, 20\}$ be ordered by divisibility.

Which of the three statements is correct?

 \underline{I}) The minimal and maximal elements are 2,6 respectively 20.

II) The minimal and maximal elements are 2 respectively 12, 20.

III) The minimal and maximal elements are 2,4 respectively 20.

(2) (5 points) a) Draw the directed graph of the relation R on $A = \{2, 3, 4, 6, 9\}$ defined by $T = \{(2,3), (2,9), (3,2), (3,4), (4,3), (4,9), (9,2), (9,4)\}$

- (3) (7 points) Let $A = \{1, 2, 3, 4, 5, 6\}$. Let R be the equivalence relation defined on A by:
- $R = \{(1,1), (1,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)\}$ Determine the partition of A induced by R.

Solution 2. 1) $\underline{\text{II}}$ is correct.

2)

3) $\{\{1,5\},\{2,3,6\},\{4\}\}$ is the partition of A induced by R.

Exercise 3. Induction (20 points)

(1) (8 points) Show that

$$\sum_{k=1}^{n} (3k-2) = \frac{n(3n-1)}{2}$$

(2) (12 points) First, show by induction that $n^2 \ge 2n + 1$ for n > 2. Use this result to determine by induction for which natural numbers we have that $2^n \ge n^2$.

Solution 3. 1) Base step: n = 1: $3 - 2 = 1 = \frac{3-1}{2}$. Ind. hyp.: Assuming the statement is true for k > 0.

$$\sum_{k=1}^{n+1} (3k-2) = \frac{n(3n-1)}{2} + (3n+1) = \frac{n(3n-1) + 2(3n+1)}{2} = \frac{(n+1)(3n+2)}{2} = \frac{(n+1)(3(n+1)-1)}{2}$$

2) Check that $3^2 = 9 \ge 6 + 1 = 7$. Hence, the formula holds for n = 3. Assume that it is true for n > 2, we check that $(n + 1)^2 = n^2 + 2n + 1 \ge 2n + 1 + 2n + 1 = 2n + 2 + 2n \ge 2n + 2 + 1 = 2(n + 1) + 1$. Thus the statements holds for n + 1.

Now, we move to the second statement. Check that for n = 2, we have $2^2 = 2^2$, but for n = 3, we have $2^3 = 8 < 3^2 = 9$, which violates the statement we want to prove. So, we look for n = 4 as base step, i.e., $16 = 4^2$ (for n = 5 we have $2^5 = 32 \ge 5^2 = 25$ and for n = 6 we have $2^6 = 64 \ge 36$). Assume that the statement holds for n > 3. For $2^{n+1} = 22^n \ge 2n^2 = n^2 + n^2 \ge n^2 + 2n + 1 = (n+1)^3$. Hence, by induction we have that the statement is correct.

Exercise 4. Functions (15 points)

- (1) (3 points) Which of the three statements is correct?
 I) The only solution of the equation (n!)! = (2n)! is n = 1.
 - <u>II</u>) The equation (n!)! = (2n)! holds for all $n \ge 4$.

<u>III</u>) n = 0 and n = 3 are all solutions of the equation (n!)! = (2n)!.

- (2) (5 points) Given $f : A \to B$ and $g : B \to C$. Show that if $g \circ f : A \to C$ is surjective, then g is surjective.
- (3) (7 points) Let S be a set and let $P = \{A_1, \ldots, A_k\}$ a partition of S. Since P is a partition of S we know that for each element $s \in S$ there exists a unique index $1 \leq j \leq k$ such that s is in $A_j \in P$. We define the map $f : S \to P$ by $f(s) = A_j$ if $s \in A_j$. Show that f is surjective.

Solution 4. 1) III) is correct.

2) Let $a \in A$, then $g \circ f(a) = g(f(a))$ is in the image of g. Suppose that g is not surjective. Then the image of g is a proper subset of C and therefore the image of $g \circ f$ is a proper subset of C. The latter implies that $g \circ f$ is not surjective. Hence, we must have that g is surjective.

3) Choose an $A_i \in P$. As A_i is not empty there must exist an element $s \in S$ such that $s \in A_i$. Therefore $f(s) = A_i$. Hence, f is surjective.

Exercise 5. Combinatorics (15 points)

- (3 points) Let p₁, p₂,..., p₁₂ be twelve given points in the plane. Suppose that no three of the points are on the same line. How many triangles, having vertices among the points p₁, p₂,..., p₁₂ and one of which is p₁, are there?
 - Which one of the three statements is correct? <u>I</u>) 220.
 - <u>II</u>) 55.

<u>III</u>) 165.

- (2) (4 points) Find the number of distinct permutations that can be formed from all the letters in the word RADAR.
- (3) (8 points) We define the Narayana numbers:

$$N(0,0) = 1$$

$$N(n,0) = 0, \ n > 0$$

$$N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}$$

$$= \frac{1}{n} \frac{n!}{k!(n-k)!} \frac{n!}{(k-1)!(n-k+1)!}, \ n \ge k \ge 1.$$

Show that

$$N(n, n+1-k) = N(n, k).$$

Solution 5. 1) II

2) There are 30 = 5!/(2!2!), because there are five letters of which two are R and two are A. 3)

$$N(n, n+1-k) = \frac{1}{n} \binom{n}{n+1-k} \binom{n}{n+1-k-1}$$
$$= \frac{1}{n} \binom{n}{n+1-k} \binom{n}{n-k}$$
$$= \frac{1}{n} \binom{n}{k-1} \binom{n}{n-k}$$
$$= \frac{1}{n} \binom{n}{n-k} \binom{n}{k-1}$$
$$= \frac{1}{n} \binom{n}{k} \binom{n}{k-1} = N(n,k)$$

Exercise 6. Boolean algebra (10 points)

- (1) (5 points) Let B be a Boolean algebra. Show, using only the axioms of Boolean algebra (i.e., do not use any tables or alike), that for any elements $a, b \in B$ we have i) $\overline{a+b} = \overline{a} \cdot \overline{b}$ and ii) $\overline{a \cdot b} = \overline{a} + \overline{b}$.
- (2) (5 points) Let B be a Boolean algebra and let a, b be any elements in B. Show, using only the axioms of Boolean algebra (i.e., do not use any tables or alike), that $\bar{a} + b = 1$ is equivalent to $a \cdot \bar{b} = 0$.

Solution 6. 1) i) We must show that $(a+b) + \bar{a} \cdot \bar{b} = 1$ and $(a+b) \cdot (\bar{a} \cdot \bar{b}) = 0$. Uniqueness of complement then says that $\bar{a+b} = \bar{a} \cdot \bar{b}$.

$$\begin{array}{l} (a+b) + \bar{a} \cdot \bar{b} = b + (a+\bar{a}) \cdot (a+\bar{b}) = b + 1 \cdot (a+\bar{b}) = b + a + \bar{b} = 1 + a = 1. \\ (a+b) \cdot (\bar{a} \cdot \bar{b}) = ((a+b) \cdot \bar{a}) \cdot \bar{b} = ((a+\bar{a}) + (b \cdot \bar{a})) \cdot \bar{b} = (0 + (b \cdot \bar{a})) \cdot \bar{b} = (b \cdot \bar{a}) \cdot \bar{b} = (b \cdot \bar{b}) \cdot \bar{a} = 0 \cdot \bar{a} = 0 \end{array}$$

ii) $\overline{a \cdot b} = \overline{a} + \overline{b}$ follows similarly (or by duality).

2) Start by assuming that $\bar{a} + b = 1$ holds. Then $0 = \bar{1} = \overline{(\bar{a} + b)} = \bar{a} \cdot \bar{b} = a \cdot \bar{b}$. Now we assume that $0 = a \cdot \bar{b}$ is true. Then $1 = \bar{0} = \overline{(a \cdot \bar{b})} = \bar{a} + \bar{\bar{b}} = \bar{a} \cdot b$.

Exercise 7. Finite state machines (10 points)

(1) (4 points) Draw the state diagram of the finite state machine N corresponding to the transition table

N	ν	ω
	$0 \ 1$	0 1
s_0	$s_0 s_1$	0 0
s_1	$s_1 \ s_2$	0 0
s_2	$s_2 \ s_3$	0 0
s_3	$s_3 \ s_4$	0 0
s_4	$s_4 \ s_5$	0 0
s_5	$s_5 \ s_0$	$0 \ 1$

What is the output corresponding to the input sequence 0110111011?

(2) (6 points) Given two states s_0, s_1 , complete the following diagram by adding arrows:

so that it becomes a state diagram of the finite state machine M, which is supposed to recognise (with an output 1) every 0 appearing in an input string x that is preceded by another 0.

FIGURE 1. The finite state machine N.

Output: 0 0 0 0 0 0 0 0 1 0

2)

NTNU, SPRING 2019

FIGURE 2. The finite state machine M.