MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

Exam 1

Exercise 1 (Sets):
Exercise 2 (Relations):
Exercise 3 (Induction):
Exercise 4 (Functions):
Exercise 5 (Graphs):
Exercise 6 (Boolean algebra):
Exercise 7 (Finite state automata)

15 points
15 points
20 points
15 points
15 points
10 points
10 points

Total: 100 points

Note: In each of the exercises 1.1, 2.1, 4.1, 5.1, exactly one answer is correct.

Exercise 1. Sets (15 points)

(1) (3 points) Suppose $U=\mathbb{N}=\{1,2,3,4,5,6, \ldots\}$. Let $A=\{1,2,3,4\}$ and $B:=\{2,3,8,9\}$.

Which of the three statements is correct?
I) The symmetric difference $A \triangle B=\{1,4,8,9\}$.
II) The symmetric difference $A \triangle B=U-(A \cup B)$.
III) The symmetric difference $A \triangle B=\{2,3\}$.
(2) (5 points) A fundamental product of the sets $A_{1}, A_{2}, \ldots, A_{n}$ is defined to be a set of the form $A_{1}^{\epsilon_{1}} \cap A_{2}^{\epsilon_{2}} \cap \cdots \cap A_{n}^{\epsilon_{n}}$, where $A_{i}^{\epsilon_{i}}$ is either the set A_{i} or its complement $\overline{A_{i}}$.
a) List all fundamental products of three sets A_{1}, A_{2}, A_{3}
b) Find the number of fundamental products of m sets $A_{1}, A_{2}, \ldots, A_{m}$
(3) ($\mathbf{7}$ points) Write down the definition of the cartesian product of two sets. Show that for three sets A, B, C the following equality of sets holds:

$$
A \times(B-C)=(A \times B)-(A \times C)
$$

Exercise 2. Relations (15 points)
(1) (3 points) Which of the three statements is correct?
I) A partial order P on a set X is reflexive, symmetric, and transitive.
II) A partial order P on a set X is reflexive, anti-symmetric, and transitive.
III) A partial order P on a set X is anti-reflexive, anti-symmetric, and transitive.
(2) (4 points) Show that:

$$
R=\{(a, a),(b, b),(c, c),(d, d),(e, e),(a, b),(a, c),(a, d),(a, e),(b, c),(e, d),(e, c)\}
$$

defines a partial order on $A:=\{a, b, c, d, e\}$ and draw the corresponding Hasse diagram.
(3) (4 points) Let $B:=\{2,3,4,16\}$ be ordered by divisibility. Find the maximal and minimal elements of B.
(4) (4 points) Let $C:=\{a, b, c, d, e, f, g, h\}$. For each of the following families of subsets of C, determine whether or not it is a partition of C. If it is a partition of C draw the graphical representation of the corresponding equivalence relation.
a) $\{\{a, c, e, g\},\{b, d\},\{h, f, c\}\}$
b) $\{\{a, c, e, g\},\{d, f, c\}\}$
c) $\{\{a, c, e, g\},\{b, h\},\{d, f\}\}$

Exercise 3. Induction (20 points)
(1) (5 points) Use induction to show that

$$
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1} .
$$

(2) (7 points) Determine for which natural numbers we have $n^{2} \geq 2 n+1$.
(3) (8 points) Let c_{n} be the sequence defined by $c_{0}=1=c_{1}, c_{2}=3$ and for $n>0$

$$
c_{n+2}=3 c_{n+1}-3 c_{n}+c_{n-1} .
$$

Show that for $n \geq 0$

$$
c_{n}=n^{2}-n+1 .
$$

Exercise 4. Functions (15 points)

(1) (3 points) Let A, B be sets. Suppose that f is a subset of $A \times B$. Which of the three statements is correct?
I) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in at least one ordered pair of f.
II) The set f defines a function if and only if each element $b \in B$ appears as the second coordinate in exactly one ordered pair of f.
III) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in exactly one ordered pair of f.
(2) (5 points) Define the function $f(x):=2 x-3$ from \mathbb{R} to \mathbb{R}. Show that F is surjective and injective. Find its inverse function f^{-1}.
(3) (7 points) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be given. Show that if $g \circ f: A \rightarrow C$ is injective, then f is injective.

Exercise 5. Graphs (15 points)

(1) (3 points) Which of the three statements is correct?
I) Let $G=G(V, E)$ be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has either degree 3 or degree 5 .
II) Let $G=G(V, E)$ be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has even degree.
III) Let $G=G(V, E)$ be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and G has exactly two vertices of odd degree.
(2) (5 points) Let $V=\{a, b, c, d\}$. Determine which of the following graphs $G=G(V, E)$ has an Euler trail or Euler circuit.
a) $E=\{\{a, b\},\{b, c\},\{c, d\},\{d, a\}\}$.
b) $E=\{\{a, b\},\{a, c\},\{b, c\},\{b, d\},\{c, d\},\{d, a\}\}$.
c) $E=\{\{a, b\},\{c, d\},\{b, a\},\{c, c\},\{d, c\}\}$.
(3) (7 points) Find the number of edges of the complete graph $K_{n}, n \geq 1$.

Exercise 6. Boolean algebra (10 points)
(1) (5 points) Let B be a Boolean algebra and let a be any element in B. Show that if $a+x=1$ and $a \cdot x=0$, then $x=\bar{a}$.
(2) (5 points) Let B be a Boolean algebra. Show that for any elements $a, b \in B$ we have that i) $a+b=b$ is equivalent to ii) $a \cdot b=a$.

Exercise 7. Finite state automata (10 points)
(1) (5 points) Let $\Sigma:=\{a, b\}$ and define the language $L:=\left\{a^{m} b^{n} \mid m, n>0\right\}$. Construct an automaton A^{\prime} which will accept the language $L\left(A^{\prime}\right)$.
(2) (5 points)
a) Draw the table for the automaton A in Fig. 1.
b) Find the language $L(A)$ accepted by the automaton A in Fig. 1.

Figure 1. The automaton A.

