MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

EXAM 1

Exercise 1 (Sets):	15 points
Exercise 2 (Relations):	15 points
Exercise 3 (Induction):	20 points
Exercise 4 (Functions):	15 points
Exercise 5 (Graphs):	15 points
Exercise 6 (Boolean algebra):	10 points
Exercise 7 (Finite state automata)	10 points

Total: 100 points

Note: In each of the exercises 1.1, 2.1, 4.1, 5.1, exactly one answer is correct.

Exercise 1. Sets (15 points)

- (1) (3 points) Suppose $U = \mathbb{N} = \{1, 2, 3, 4, 5, 6, ...\}$. Let $A = \{1, 2, 3, 4\}$ and $B := \{2, 3, 8, 9\}$. Which of the three statements is correct?
 - <u>I</u>) The symmetric difference $A \triangle B = \{1, 4, 8, 9\}$.
 - <u>II</u>) The symmetric difference $A \triangle B = U (A \cup B)$.
 - <u>III</u>) The symmetric difference $A \triangle B = \{2, 3\}$.
- (2) (5 points) A fundamental product of the sets A_1, A_2, \ldots, A_n is defined to be a set of the form $A_1^{\epsilon_1} \cap A_2^{\epsilon_2} \cap \cdots \cap A_n^{\epsilon_n}$, where $A_i^{\epsilon_i}$ is either the set A_i or its complement $\overline{A_i}$.
 - a) List all fundamental products of three sets A_1, A_2, A_3
 - b) Find the number of fundamental products of m sets A_1, A_2, \ldots, A_m
- (3) (7 points) Write down the definition of the cartesian product of two sets. Show that for three sets A, B, C the following equality of sets holds:

$$A \times (B - C) = (A \times B) - (A \times C).$$

Date: May 24, 2019.

Exercise 2. Relations (15 points)

(1) (3 points) Which of the three statements is correct?

 \underline{I}) A partial order P on a set X is reflexive, symmetric, and transitive.

 \underline{II}) A partial order P on a set X is reflexive, anti-symmetric, and transitive.

III) A partial order P on a set X is anti-reflexive, anti-symmetric, and transitive.

(2) (4 points) Show that:

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (a, e), (b, c), (e, d), (e, c)\}$$

defines a partial order on $A := \{a, b, c, d, e\}$ and draw the corresponding Hasse diagram.

- (3) (4 points) Let $B := \{2, 3, 4, 16\}$ be ordered by divisibility. Find the maximal and minimal elements of B.
- (4) (4 points) Let $C := \{a, b, c, d, e, f, g, h\}$. For each of the following families of subsets of C, determine whether or not it is a partition of C. If it is a partition of C draw the graphical representation of the corresponding equivalence relation.
 - a) $\{\{a, c, e, g\}, \{b, d\}, \{h, f, c\}\}$
 - b) $\{\{a, c, e, g\}, \{d, f, c\}\}$
 - c) $\{\{a, c, e, g\}, \{b, h\}, \{d, f\}\}$

Exercise 3. Induction (20 points)

(1) (5 points) Use induction to show that

$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$$

- (2) (7 points) Determine for which natural numbers we have $n^2 \ge 2n + 1$.
- (3) (8 points) Let c_n be the sequence defined by $c_0 = 1 = c_1$, $c_2 = 3$ and for n > 0

$$c_{n+2} = 3c_{n+1} - 3c_n + c_{n-1}.$$

Show that for $n \ge 0$

$$c_n = n^2 - n + 1.$$

NTNU, SPRING 2019

Exercise 4. Functions (15 points)

(1) (3 points) Let A, B be sets. Suppose that f is a subset of $A \times B$. Which of the three statements is correct?

<u>I</u>) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in at least one ordered pair of f.

<u>II</u>) The set f defines a function if and only if each element $b \in B$ appears as the second coordinate in exactly one ordered pair of f.

<u>III</u>) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in exactly one ordered pair of f.

- (2) (5 points) Define the function f(x) := 2x 3 from \mathbb{R} to \mathbb{R} . Show that F is surjective and injective. Find its inverse function f^{-1} .
- (3) (7 points) Let $f : A \to B$ and $g : B \to C$ be given. Show that if $g \circ f : A \to C$ is injective, then f is injective.

Exercise 5. Graphs (15 points)

(1) (3 points) Which of the three statements is correct?

<u>I</u>) Let G = G(V, E) be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has either degree 3 or degree 5.

<u>II</u>) Let G = G(V, E) be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has even degree.

<u>III</u>) Let G = G(V, E) be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and G has exactly two vertices of odd degree.

(2) (5 points) Let $V = \{a, b, c, d\}$. Determine which of the following graphs G = G(V, E) has an Euler trail or Euler circuit.

a) $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, a\}\}.$ b) $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{d, a\}\}.$ c) $E = \{\{a, b\}, \{c, d\}, \{b, a\}, \{c, c\}, \{d, c\}\}.$

(3) (7 points) Find the number of edges of the complete graph K_n , $n \ge 1$.

Exercise 6. Boolean algebra (10 points)

- (1) (5 points) Let B be a Boolean algebra and let a be any element in B. Show that if a + x = 1and $a \cdot x = 0$, then $x = \overline{a}$.
- (2) (5 points) Let B be a Boolean algebra. Show that for any elements $a, b \in B$ we have that i) a + b = b is equivalent to ii) $a \cdot b = a$.

Exercise 7. Finite state automata (10 points)

- (1) (5 points) Let $\Sigma := \{a, b\}$ and define the language $L := \{a^m b^n | m, n > 0\}$. Construct an automaton A' which will accept the language L(A').
- (2) **(5 points)**
 - a) Draw the table for the automaton A in Fig. 1.
 - b) Find the language L(A) accepted by the automaton A in Fig. 1.

FIGURE 1. The automaton A.