MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

EXAM 1

Exercise 1 (Sets):	15 points
Exercise 2 (Relations):	15 points
Exercise 3 (Induction):	20 points
Exercise 4 (Functions):	15 points
Exercise 5 (Graphs):	15 points
Exercise 6 (Boolean algebra):	10 points
Exercise 7 (Finite state automata)	10 points

Total: 100 points

Note: In each of the exercises 1.1, 2.1, 4.1, 5.1, exactly one answer is correct.

Exercise 1. Sets (15 points)

(1) (3 points) Suppose $U = \mathbb{N} = \{1, 2, 3, 4, 5, 6, \ldots\}$. Let $A = \{1, 2, 3, 4\}$ and $B := \{2, 3, 8, 9\}$.

Which of the three statements is correct?

- <u>I</u>) The symmetric difference $A \triangle B = \{1, 4, 8, 9\}$.
- <u>II</u>) The symmetric difference $A \triangle B = U (A \cup B)$.
- <u>III</u>) The symmetric difference $A \triangle B = \{2, 3\}$.
- (2) (5 points) A fundamental product of the sets A_1, A_2, \ldots, A_n is defined to be a set of the form $A_1^{\epsilon_1} \cap A_2^{\epsilon_2} \cap \cdots \cap A_n^{\epsilon_n}$, where $A_i^{\epsilon_i}$ is either the set A_i or its complement $\overline{A_i}$.
 - a) List all fundamental products of three sets A_1, A_2, A_3
 - b) Find the number of fundamental products of m sets A_1, A_2, \ldots, A_m
- (3) (7 points) Write down the definition of the cartesian product of two sets. Show that for three sets A, B, C the following equality of sets holds:

$$A \times (B - C) = (A \times B) - (A \times C).$$

<u>Solution</u> 1. 1) \underline{I} is correct.

2b) Observe that the set $A_1^{\epsilon_1}$ in a fundamental product $A_1^{\epsilon_1} \cap A_2^{\epsilon_2} \cap \cdots \cap A_m^{\epsilon_m}$ can be either A_1 or its complement $\overline{A_1}$. The same holds for the sets $A_2^{\epsilon_2}, \ldots, A_m^{\epsilon_m}$. Hence, there are 2^m such fundamental products.

3) $A \times B := \{(a, b) \mid a \in A, b \in B\}$

Let $(x, y) \in (A \times B) - (A \times C)$. This is equivalent to $(x, y) \in (A \times B)$ and $(x, y) \notin (A \times C)$. This is equivalent to $x \in A \land y \in B$ and $\neg (x \in A \land y \in C) \Leftrightarrow (x \in A \land y \in B) \land (x \notin A \lor y \notin C) \Leftrightarrow (x \in A \land y \in B \land x \notin A) \lor (x \in A \land y \in B \land y \notin C) \Leftrightarrow (x \in A \land y \in B \land x \notin A) \lor (x \in A \land y \in B \land y \notin C) \Leftrightarrow (x \in A \land y \in B \land y \notin C)$

Date: May 24, 2019.

Exercise 2. Relations (15 points)

(1) (3 points) Which of the three statements is correct?

I) A partial order P on a set X is reflexive, symmetric, and transitive.

II) A partial order P on a set X is reflexive, anti-symmetric, and transitive.

III) A partial order P on a set X is anti-reflexive, anti-symmetric, and transitive.

(2) (4 points) Show that:

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (a, e), (b, c), (e, d), (e, c)\}$$

defines a partial order on $A := \{a, b, c, d, e\}$ and draw the corresponding Hasse diagram.

- (3) (4 points) Let $B := \{2, 3, 4, 16\}$ be ordered by divisibility. Find the maximal and minimal elements of B.
- (4) (4 points) Let $C := \{a, b, c, d, e, f, g, h\}$. For each of the following families of subsets of C, determine whether or not it is a partition of C. If it is a partition of C draw the graphical representation of the corresponding equivalence relation.
 - a) $\{\{a, c, e, g\}, \{b, d\}, \{h, f, c\}\}$
 - b) $\{\{a, c, e, g\}, \{d, f, c\}\}$
 - c) $\{\{a, c, e, g\}, \{b, h\}, \{d, f\}\}$

<u>Solution</u> **2.** 1) $\underline{\text{II}}$) is correct.

2) Hasse diagram for partial order R on $A := \{a, b, c, d, e\}$

3) The maximal elements are 3 and 16. The minimal elements are 2 and 3.

4) a) is not partition since the subsets are not disjoint; b) is not a partition since no subset contains the element b; c) is a partition

Exercise 3. Induction (20 points)

(1) (5 points) Use induction to show that

$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}.$$

- (2) (7 points) Determine for which natural numbers we have $n^2 \ge 2n + 1$.
- (3) (8 points) Let c_n be the sequence defined by $c_0 = 1 = c_1$, $c_2 = 3$ and for n > 0

$$c_{n+2} = 3c_{n+1} - 3c_n + c_{n-1}.$$

Show that for $n \ge 0$

$$c_n = n^2 - n + 1.$$

Solution 3. 1) base step: n = 1: $\frac{1}{3} = \frac{1}{2+1}$. Assume that the statement holds for n > 0.

$$\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2(n+1)-1)(2(n+1)+1)}$$
$$= \frac{n}{2n+1} + \frac{1}{(2(n+1)-1)(2(n+1)+1)}$$
$$= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)}$$
$$= \frac{2n^2 + 3n + 1}{(2n+1)(2n+3)}$$
$$= \frac{(n+1)(2n+1)}{(2n+1)(2n+3)}$$
$$= \frac{n+1}{2n+3} = \frac{n+1}{2(n+1)+1}.$$

Hence, the statement is true for all n > 0.

2) Observe that $1^2 = 1 < 3$ and $2^2 = 4 < 5$, but $3^2 = 9 > 7$. Hence, the inequality is true for n = 3, which serves also as our base step. Now, assume that $n^2 \ge 2n + 1$ and consider

$$(n+1)^2 = n^2 + 2n + 1 \ge 2n + 1 + 2n + 1 = 2n + 2 + 2n \ge 2n + 2 + 1 = 2(n+1) + 1.$$

3) Given $c_0 = 1 = c_1$, $c_2 = 3$ and for n > 2 shifting the recursion we have

$$c_n = 3c_{n-1} - 3c_{n-2} + c_{n-3}$$

We want to show that $c_n = n^2 - n + 1$. Base step: n = 0, 1, 2 we have

$$c_0 = 1 = 0^2 - 0 + 1$$
, $c_1 = 1 = 1^2 - 1 + 1$, $c_2 = 3 = 2^2 - 2 + 1$.

Ind. hypothesis: we assume that for a fixed n, if $0 \le i \le n$, then $c_i = i^2 - i + 1$. Ind. step: to obtain c_{n+1} , we can use c_n , c_{n-1} , c_{n-2} . We have $c_n = n^2 - n + 1$, $c_{n-1} = (n-1)^2 - (n-1) + 1$, $c_{n-2} = (n-2)^2 - (n-2) + 1$. With this we obtain

$$c_{n+1} = 3c_n - 3c_{n-1} + c_{n-2} = 3(n^2 - n + 1) - 3((n-1)^2 - (n-1) + 1) + (n-2)^2 - (n-2) + 1.$$

This then yields

$$3n^{2} - 3n + 3 - 3n^{2} + 9n - 9 + n^{2} - 5n + 7 = n^{2} + n + 1 = n^{2} + 2n + 1 - (n + 1) + 1 = (n + 1)^{2} - (n + 1) + 1.$$

Exercise 4. Functions (15 points)

(1) (3 points) Let A, B be sets. Suppose that f is a subset of $A \times B$. Which of the three statements is correct?

<u>I</u>) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in at least one ordered pair of f.

<u>II</u>) The set f defines a function if and only if each element $b \in B$ appears as the second coordinate in exactly one ordered pair of f.

<u>III</u>) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in exactly one ordered pair of f.

- (2) (5 points) Define the function f(x) := 2x 3 from \mathbb{R} to \mathbb{R} . Show that F is surjective and injective. Find its inverse function f^{-1} .
- (3) (7 points) Let $f : A \to B$ and $g : B \to C$ be given. Show that if $g \circ f : A \to C$ is injective, then f is injective.

Solution 4. 1) III) is correct.

2) Both injectivity and surjectivity are clear. The inverse is $f^{-1}(x) = \frac{x+3}{2}$.

3) Suppose that f is not injective. This means that there exist elements $a, b \in A, a \neq b$, for which f(a) = f(b). With this we obtain that $(g \circ f)(a) = g(f(a)) = g(f(b)) = (g \circ f)(b)$, which implies that $(g \circ f)$ is not injective, contradicting the hypothesis. Hence, with $(g \circ f)$ injective f must be injective, too.

Exercise 5. Graphs (15 points)

(1) (3 points) Which of the three statements is correct?

<u>I</u>) Let G = G(V, E) be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has either degree 3 or degree 5.

<u>II</u>) Let G = G(V, E) be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has even degree.

<u>III</u>) Let G = G(V, E) be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and G has exactly two vertices of odd degree.

- (2) (5 points) Let $V = \{a, b, c, d\}$. Determine which of the following graphs G = G(V, E) has an Euler trail or Euler circuit.
 - a) $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, a\}\}.$
 - b) $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{d, a\}\}.$
 - c) $E = \{\{a, b\}, \{c, d\}, \{b, a\}, \{c, c\}, \{d, c\}\}.$
- (3) (7 points) Find the number of edges of the complete graph K_n , $n \ge 1$.

Solution 5. 1) II

- 2) Find the degree of each vertex.
 - a) All vertices have even degree: Euler circuit
 - b) All vertices have degree three: no Euler circuit; no Euler trail
 - c) The graph is not connected.

3) Each pair of vertices determines an edge. There are $\frac{n!}{2!(n-2)!}$ ways of selecting two vertices out of n. Hence, there are = n(n-1)/2 edges in K_n , n > 0.

Exercise 6. Boolean algebra (10 points)

- (1) (5 points) Let B be a Boolean algebra and let a be any element in B. Show that if a + x = 1and $a \cdot x = 0$, then $x = \overline{a}$.
- (2) (5 points) Let B be a Boolean algebra. Show that for any elements $a, b \in B$ we have that i) a + b = b is equivalent to ii) $a \cdot b = a$.

Solution 6. 1) We know that $\bar{a} = \bar{a} + 0 = \bar{a} + a \cdot x = (\bar{a} + a) \cdot (\bar{a} + x) = 1 \cdot (\bar{a} + x) = (\bar{a} + x)$. We also know that $x = x + 0 = x + (a \cdot \bar{a}) = (x + a) \cdot (x + \bar{a}) = 1 \cdot (x + \bar{a}) = x + \bar{a}$. Therefore $x = x + \bar{a} = \bar{a}$.

2) Suppose that $a \cdot b = a$. The absorption law tell us that $b = b + (a \cdot b) = b + a = a + b$. Now suppose that a + b = b. The absorption law yields $a = a \cdot (a + b) = a \cdot b$. Therefore a + b = b iff $a \cdot b = a$.

- (1) (5 points) Let $\Sigma := \{a, b\}$ and define the language $L := \{a^m b^n | m, n > 0\}$. Construct an automaton A' which will accept the language L(A').
- (2) **(5 points)**
 - a) Draw the table for the automaton A in Fig. 1.
 - b) Find the language L(A) accepted by the automaton A in Fig. 1.

FIGURE 1. The automaton A.

Solution 7. 1)

FIGURE 2. The automaton A' accepting $L := \{a^m b^n \mid m, n > 0\}$.

2)

A	ν
	$a \ b$
s_0	$s_1 \ s_0$
s_1	$s_2 \ s_0$
s_2	$s_2 \ s_3$
s_3	$s_1 \ s_4$
s_4	$s_4 \; s_4$

Words that reach the accepting state s_4 in the automaton A in Fig. 1., and stay there are exactly the words that contain the sequence *aabb* as a subword. The language L(A) consists of those words.