MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2019

Exam 1

Exercise 1 (Sets):
Exercise 2 (Relations):
Exercise 3 (Induction):
Exercise 4 (Functions):
Exercise 5 (Graphs):
Exercise 6 (Boolean algebra):
Exercise 7 (Finite state automata)

15 points
15 points
20 points
15 points
15 points
10 points
10 points

Total: 100 points

Note: In each of the exercises 1.1, 2.1, 4.1, 5.1, exactly one answer is correct.
Exercise 1. Sets (15 points)
(1) (3 points) Suppose $U=\mathbb{N}=\{1,2,3,4,5,6, \ldots\}$. Let $A=\{1,2,3,4\}$ and $B:=\{2,3,8,9\}$.

Which of the three statements is correct?
I) The symmetric difference $A \triangle B=\{1,4,8,9\}$.
II) The symmetric difference $A \triangle B=U-(A \cup B)$.
III) The symmetric difference $A \triangle B=\{2,3\}$.
(2) (5 points) A fundamental product of the sets $A_{1}, A_{2}, \ldots, A_{n}$ is defined to be a set of the form $A_{1}^{\epsilon_{1}} \cap A_{2}^{\epsilon_{2}} \cap \cdots \cap A_{n}^{\epsilon_{n}}$, where $A_{i}^{\epsilon_{i}}$ is either the set A_{i} or its complement $\overline{A_{i}}$.
a) List all fundamental products of three sets A_{1}, A_{2}, A_{3}
b) Find the number of fundamental products of m sets $A_{1}, A_{2}, \ldots, A_{m}$
(3) ($\mathbf{7}$ points) Write down the definition of the cartesian product of two sets. Show that for three sets A, B, C the following equality of sets holds:

$$
A \times(B-C)=(A \times B)-(A \times C)
$$

Solution 1. 1) I is correct.
2a) $A_{1} \cap A_{2} \cap A_{3}, \quad \overline{A_{1}} \cap A_{2} \cap A_{3}, \quad A_{1} \cap \overline{A_{2}} \cap A_{3}, \quad A_{1} \cap A_{2} \cap \overline{A_{3}}$, $\overline{A_{1}} \cap \overline{A_{2}} \cap A_{3}, \quad A_{1} \cap \overline{A_{2}} \cap \overline{A_{3}}, \quad \overline{A_{1}} \cap A_{2} \cap \overline{A_{3}}, \quad \overline{A_{1}} \cap \overline{A_{2}} \cap \overline{A_{3}}$
2b) Observe that the set $A_{1}^{\epsilon_{1}}$ in a fundamental product $A_{1}^{\epsilon_{1}} \cap A_{2}^{\epsilon_{2}} \cap \cdots \cap A_{m}^{\epsilon_{m}}$ can be either A_{1} or its complement $\overline{A_{1}}$. The same holds for the sets $A_{2}^{\epsilon_{2}}, \ldots, A_{m}^{\epsilon_{m}}$. Hence, there are 2^{m} such fundamental products.
3) $A \times B:=\{(a, b) \mid a \in A, b \in B\}$

Let $(x, y) \in(A \times B)-(A \times C)$. This is equivalent to $(x, y) \in(A \times B)$ and $(x, y) \notin(A \times C)$. This is equivalent to $x \in A \wedge y \in B$ and $\neg(x \in A \wedge y \in C) \Leftrightarrow(x \in A \wedge y \in B) \wedge(x \notin A \vee y \notin C) \Leftrightarrow(x \in A \wedge y \in B \wedge x \notin A) \vee(x \in$ $A \wedge y \in B \wedge y \notin C) \Leftrightarrow(x \in A \wedge y \in B \wedge y \notin C) \Leftrightarrow x \in A \wedge y \in(B-C) \Leftrightarrow(x, y) \in A \times(B-C)$.

Exercise 2. Relations (15 points)
(1) ($\mathbf{3}$ points) Which of the three statements is correct?
I) A partial order P on a set X is reflexive, symmetric, and transitive.
II) A partial order P on a set X is reflexive, anti-symmetric, and transitive.
III) A partial order P on a set X is anti-reflexive, anti-symmetric, and transitive.
(2) (4 points) Show that:

$$
R=\{(a, a),(b, b),(c, c),(d, d),(e, e),(a, b),(a, c),(a, d),(a, e),(b, c),(e, d),(e, c)\}
$$

defines a partial order on $A:=\{a, b, c, d, e\}$ and draw the corresponding Hasse diagram.
(3) (4 points) Let $B:=\{2,3,4,16\}$ be ordered by divisibility. Find the maximal and minimal elements of B.
(4) (4 points) Let $C:=\{a, b, c, d, e, f, g, h\}$. For each of the following families of subsets of C, determine whether or not it is a partition of C. If it is a partition of C draw the graphical representation of the corresponding equivalence relation.
a) $\{\{a, c, e, g\},\{b, d\},\{h, f, c\}\}$
b) $\{\{a, c, e, g\},\{d, f, c\}\}$
c) $\{\{a, c, e, g\},\{b, h\},\{d, f\}\}$

Solution 2. 1) II) is correct.
2) Hasse diagram for partial order R on $A:=\{a, b, c, d, e\}$

3) The maximal elements are 3 and 16 . The minimal elements are 2 and 3 .
4) a) is not partition since the subsets are not disjoint; b) is not a partition since no subset contains the element $b ; c$) is a partition

Exercise 3. Induction (20 points)

(1) (5 points) Use induction to show that

$$
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1} .
$$

(2) (7 points) Determine for which natural numbers we have $n^{2} \geq 2 n+1$.
(3) (8 points) Let c_{n} be the sequence defined by $c_{0}=1=c_{1}, c_{2}=3$ and for $n>0$

$$
c_{n+2}=3 c_{n+1}-3 c_{n}+c_{n-1} .
$$

Show that for $n \geq 0$

$$
c_{n}=n^{2}-n+1
$$

Solution 3. 1) base step: $n=1: \frac{1}{3}=\frac{1}{2+1}$. Assume that the statement holds for $n>0$.

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{1}{(2 k-1)(2 k+1)} & =\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2(n+1)-1)(2(n+1)+1)} \\
& =\frac{n}{2 n+1}+\frac{1}{(2(n+1)-1)(2(n+1)+1)} \\
& =\frac{n}{2 n+1}+\frac{1}{(2 n+1)(2 n+3)} \\
& =\frac{2 n^{2}+3 n+1}{(2 n+1)(2 n+3)} \\
& =\frac{(n+1)(2 n+1)}{(2 n+1)(2 n+3)} \\
& =\frac{n+1}{2 n+3}=\frac{n+1}{2(n+1)+1} .
\end{aligned}
$$

Hence, the statement is true for all $n>0$.
2) Observe that $1^{2}=1<3$ and $2^{2}=4<5$, but $3^{2}=9>7$. Hence, the inequality is true for $n=3$, which serves also as our base step. Now, assume that $n^{2} \geq 2 n+1$ and consider

$$
(n+1)^{2}=n^{2}+2 n+1 \geq 2 n+1+2 n+1=2 n+2+2 n \geq 2 n+2+1=2(n+1)+1 .
$$

3) Given $c_{0}=1=c_{1}, c_{2}=3$ and for $n>2$ shifting the recursion we have

$$
c_{n}=3 c_{n-1}-3 c_{n-2}+c_{n-3} .
$$

We want to show that $c_{n}=n^{2}-n+1$.
Base step: $n=0,1,2$ we have

$$
c_{0}=1=0^{2}-0+1, \quad c_{1}=1=1^{2}-1+1, \quad c_{2}=3=2^{2}-2+1 .
$$

Ind. hypothesis: we assume that for a fixed n, if $0 \leq i \leq n$, then $c_{i}=i^{2}-i+1$.
Ind. step: to obtain c_{n+1}, we can use c_{n}, c_{n-1}, c_{n-2}. We have $c_{n}=n^{2}-n+1, c_{n-1}=(n-1)^{2}-(n-1)+1$, $c_{n-2}=(n-2)^{2}-(n-2)+1$. With this we obtain

$$
c_{n+1}=3 c_{n}-3 c_{n-1}+c_{n-2}=3\left(n^{2}-n+1\right)-3\left((n-1)^{2}-(n-1)+1\right)+(n-2)^{2}-(n-2)+1 .
$$

This then yields
$3 n^{2}-3 n+3-3 n^{2}+9 n-9+n^{2}-5 n+7=n^{2}+n+1=n^{2}+2 n+1-(n+1)+1=(n+1)^{2}-(n+1)+1$.

Exercise 4. Functions (15 points)

(1) (3 points) Let A, B be sets. Suppose that f is a subset of $A \times B$. Which of the three statements is correct?
I) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in at least one ordered pair of f.
II) The set f defines a function if and only if each element $b \in B$ appears as the second coordinate in exactly one ordered pair of f.
III) The set f defines a function if and only if each element $a \in A$ appears as the first coordinate in exactly one ordered pair of f.
(2) (5 points) Define the function $f(x):=2 x-3$ from \mathbb{R} to \mathbb{R}. Show that F is surjective and injective. Find its inverse function f^{-1}.
(3) (7 points) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be given. Show that if $g \circ f: A \rightarrow C$ is injective, then f is injective.

Solution 4. 1) III) is correct.
2) Both injectivity and surjectivity are clear. The inverse is $f^{-1}(x)=\frac{x+3}{2}$.
3) Suppose that f is not injective. This means that there exist elements $a, b \in A, a \neq b$, for which $f(a)=f(b)$. With this we obtain that $(g \circ f)(a)=g(f(a))=g(f(b))=(g \circ f)(b)$, which implies that $(g \circ f)$ is not injective, contradicting the hypothesis. Hence, with $(g \circ f)$ injective f must be injective, too.

Exercise 5. Graphs (15 points)

(1) (3 points) Which of the three statements is correct?
I) Let $G=G(V, E)$ be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has either degree 3 or degree 5 .
II) Let $G=G(V, E)$ be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and every vertex of G has even degree.
III) Let $G=G(V, E)$ be a (multi-)graph. Then G has a closed Euler trail if and only if it is connected and G has exactly two vertices of odd degree.
(2) (5 points) Let $V=\{a, b, c, d\}$. Determine which of the following graphs $G=G(V, E)$ has an Euler trail or Euler circuit.
a) $E=\{\{a, b\},\{b, c\},\{c, d\},\{d, a\}\}$.
b) $E=\{\{a, b\},\{a, c\},\{b, c\},\{b, d\},\{c, d\},\{d, a\}\}$.
c) $E=\{\{a, b\},\{c, d\},\{b, a\},\{c, c\},\{d, c\}\}$.
(3) (7 points) Find the number of edges of the complete graph $K_{n}, n \geq 1$.

Solution 5. 1) II
2) Find the degree of each vertex.
a) All vertices have even degree: Euler circuit
b) All vertices have degree three: no Euler circuit; no Euler trail
c) The graph is not connected.
3) Each pair of vertices determines an edge. There are $\frac{n!}{2!(n-2)!}$ ways of selecting two vertices out of n. Hence, there are $=n(n-1) / 2$ edges in $K_{n}, n>0$.

Exercise 6. Boolean algebra (10 points)

(1) (5 points) Let B be a Boolean algebra and let a be any element in B. Show that if $a+x=1$ and $a \cdot x=0$, then $x=\bar{a}$.
(2) (5 points) Let B be a Boolean algebra. Show that for any elements $a, b \in B$ we have that i) $a+b=b$ is equivalent to ii) $a \cdot b=a$.

Solution 6. 1) We know that $\bar{a}=\bar{a}+0=\bar{a}+a \cdot x=(\bar{a}+a) \cdot(\bar{a}+x)=1 \cdot(\bar{a}+x)=(\bar{a}+x)$. We also know that $x=x+0=x+(a \cdot \bar{a})=(x+a) \cdot(x+\bar{a})=1 \cdot(x+\bar{a})=x+\bar{a}$. Therefore $x=x+\bar{a}=\bar{a}$.
2) Suppose that $a \cdot b=a$. The absorption law tell us that $b=b+(a \cdot b)=b+a=a+b$. Now suppose that $a+b=b$. The absorption law yields $a=a \cdot(a+b)=a \cdot b$. Therefore $a+b=b$ iff $a \cdot b=a$.

Exercise 7. Finite state automata (10 points)
(1) (5 points) Let $\Sigma:=\{a, b\}$ and define the language $L:=\left\{a^{m} b^{n} \mid m, n>0\right\}$. Construct an automaton A^{\prime} which will accept the language $L\left(A^{\prime}\right)$.
(2) (5 points)
a) Draw the table for the automaton A in Fig. 1.
b) Find the language $L(A)$ accepted by the automaton A in Fig. 1.

Figure 1. The automaton A.

Solution 7. 1)

Figure 2. The automaton A^{\prime} accepting $L:=\left\{a^{m} b^{n} \mid m, n>0\right\}$.
2)

A	ν
	a

Words that reach the accepting state s_{4} in the automaton A in Fig. 1., and stay there are exactly the words that contain the sequence $a a b b$ as a subword. The language $L(A)$ consists of those words.

