

Examination paper for
TDT4102 - Procedural- and Objectoriented Programming

Academic contact during the exam: Trond Aalberg
Phone: 97631088

Examination date: 03. June 2015
Examination time: 09-13
Permitted examination support material: C: Specified printed and hand-written
support material is allowed.
Allowed printed book: Walter Savitch, Absolute C++ or Lyle Loudon, C++
Pocket Reference.

Language: English

Number of pages: 11 including front page and appendix

Checked by by

Date Signature

Department of Computer and Information Sci-
ence
Page 1 of 11

 General introduction

Read the assignments carefully. Some descriptions are elaborated, but this is to give sufficient con-
text, introduction and examples for the assignments.
When the phrases “implement” or “write” is used, we request a functioning implementation. E.g. if
the assignment is to implement a function then the answer is to write the complete function including
the declaration with appropriate parameters and return type, and the function body.
If the phrase “declare” is used, we are only interested in a function or class declaration. This is typi-
cally the code you will find in a header file.
If we ask you to “explain” you are free to decide how to answer, but use simple lines of code or short
textual descriptions and be precise and avoid lengthy text.
If you find that information is missing from an assignment, explain any assumptions and prerequi-
sites you find it necessary to make.
All code has to be in C++. The exam does not require knowledge of other classes and functions than
the ones you have become familiar with in the exercises. Include statements and the organization of
code in files is not relevant for the exam.
The exam is work demanding and we do not expect all to complete all questions. Try to be strategic
and select the questions that are suitable for your level and your ambitions. The more time you spend
browsing the book, the less time you have to find solutions. The various parts of an assignment is
organized in a logical sequence, but the sequence does not imply an increase in difficulty.
The main parts count with the percentages indicated, but we reserve the right to change the weighting
depending on how the results. The separate subparts may also be weighted differently.
Page 2 of 11

Assignment 1: Implementing a class (45%)
Rational numbers are numbers that can be written as a fraction with integer numerator and denominator. The
class below is the start of a class for rational numbers. The tasks in this assignment are to implement member
functions and operators and answer some theoretical question.

a) Implement the member function reduce(). It will be used to reduce/simplify the Rational-
instance (fraction) it is called in context of. It is a helper function that e.g. is to be used in the con-
structor or operators that modifies the state of an object. Calling reduce() should result in the fol-
lowing:

1) The fraction is reduce with the assistance of the gcd()-function.
gcd is an implementation of Euclid’s algorithm that will give you the greatest common divisor for
to numbers. Given an object having n = 2 and d = 4 we can use gcd to find the greatest common
divisor that then can be used to reduce both members giving the result n = 1 and d = 2.

2) The function will make sure we always express the sign of the fraction using the nominator. We
want the nominator to be positive or negative, but the denominator should always be a positive
number - following ordinary rules for fractions.
Given (n = 2, d = -3), reduce() should change this to (n = -2, d = 3).
Given (n = -2, d = -2), reduce() should change this to (n = 2, d = 3).

b) Implement the constructor Rational(int n, int d). reduce() is of course intended to be used.
It is the responsibility of the programmer that uses this class to prevent 0 as denominator.

c) Implement the member function double to_double(). The funtion returns the fraction as a deci-
mal number of type double. For Rational a(1,2) a call to a.to_double() will return 0.5.

d) Implement the “less than”-operator as member of the class.

e) Show how to use the “less than”-opertor in the implementation of the “is equal”-operator.

f) Implement the postfix increment operator as member of the class.
Incrementing increases the fraction with the value of 1. Given an object Rational a with the value
of 1/3 (which means n = 1 and d = 3), then the statement a++; should yield 4/3 (n = 4 and d = 3)
because we are adding 3/3 which is the same as 1. Remember that the return value of postfix incre-
ment is the value of the object before it is incremented.

class Rational{
private:
 int n; //numerator (norsk: teller)
 int d; //denominator (norsk: nevner)
 void reduce(); //reduce the fraction (norsk: forkorte brøken)
 int gcd(int a, int b); //finds the greatest common divisor
public:
 Rational(); //creates a value of 0/1
 Rational(int n, int d); //creates a value of n/d
 int numerator(); //returns numerator
 int denominator(); //returns denominator
 double to_double(); //returns fraction as double value
};

int Rational::gcd(int a, int b){
 //Euclids Algorithm - finds the greatest common divisor for a and b
 if (b == 0){
 return a;
 }
 return gcd(b,a%b);
}

Page 3 of 11

g) Implement as members the arithmetical opertors that are needed to support the following statement:
a *= b * c; Where a, b and c all are Rational objects.

h) Is it necessary to implement the assignment operator and/or the copy constructor for this class?
Explain your answer.

i) In C++ there are different integer types such as short, int, long and they can be signed or
unsigned. There are also different decimal number types such as float and double.

1) Declare Rational as a template-class where the type used for numerator and denominator is
declared by the user of the class.

2) Do you see any pitfalls in the declaration/use of such a class? Explain your answer

j) How do you have to declare gdc() if you still want it as a part of the class, but want to make use of
the function without an instance of Rational?
We want to be able to write: int dvs = Rational::gcd(8, 10);

k) The constructor Rational(int n, int d) could have been implemented to throw and exception
of type invalid_argument if the denominator was initialized with 0. Would this have been a suffi-
cient and practical solution to prevent integer division by zero? The context for your answer should
be a more complete implementation of Rational including all arithmetical operators. Explain your
answer.

l) Given that you want to support the following assignment:
Rational r;
r.denominator() = 5;

How can this be achieved simply by changing the declaration of this function?
Note! This is meant as a theoretical question and is not very realistic.
Page 4 of 11

Assignment 2: The Snake game (45%)
In this assignment you will implement parts of a game that commonly is called Snake. In this game, the user
controls with the arrow keys a snake that moves around on the screen and eats pieces of food that pops up at
random places. Whenever a piece is eaten the length of the snake increases. The game is over if the snake hits
the borders of the window or if the snake collides with itself.
The image shows how the game may look like. The yellow rectangle in the window is the piece the snake is
hunting. The head of the snake is shown in red and the rest of the snake body is light green. When the snake
changes direction the rest of the body will follow the same path leading to many turns in the body. As the
length of the snake increases it will be harder to avoid hitting the border or preventing that the snake collides
with itself.

 The challenge in this assignment is to un-
derstand a somewhat complex problem
(given the time limits) and to design and
write code that is essential for the program.
The code is partly based on the SFML-
library for games and multimedia, but you
do not need to know this library in advance
to understand and do the assignment - and
we have simplified the code.
Examples and explanations can be found
in the appendix. Start by figuring out
how main() works.
The full declaration of the functions men-
tioned in the assignment can be found in the
appendix.

a) Implement the function initSnake().
This function initializes the snake with 4 rectangles placed side by side approximately in the middle
of the window.
A snake is actually only a collection of rectangles. In the example code we implement the snake using
vector<Rectangle>. The class Rectangle has a function setPosition() that is used to place rectangles
in the window and get-functions to read the position. Usage examples are found in the appendix.

b) Learn from examples in the appendix how the snake movement is to be implemented.
1) The library type vector<> is actually not very suitable for our snake implementation. Why?
2) What other container type in the library should you rather use?
There is no need to change 2a) even if you suggest a different type.

c) Implement the function moveSnake(). Calling this function once should move the snake one step in
the direction given by the parameter. Assume that direction always is valid.
You do not have to consider the case where the snake collides with the border of the window and
you are free to exchange vector with whatever type you suggested in 2b.

d) Implement the function collisionTest() that is used to detect “collision” between rectangles.
Collision means in practise that two rectangles overlap.
All rectangles in this game are x- and y-aligned and we can use the straight-forward and simple test-
ing suggested in the appendix.
Page 5 of 11

e) Implement the function placePiece(). The Rectangle-variable piece is the piece the snake is
hunting. This function will update piece with a random position within the window, but should
also make sure that the piece is not placed on top of the snake.

f) Show and explain how and where in main you will use collisionTest() to check if the snake has
“eaten” the piece. If the piece is eaten it should be updated with a new position.
In practise this means that you check if the head of the snake overlaps with the piece-rectangle. What
we refer to as the head of the snake will be the rectangle in the front, but what the front is will depend
on the order you are storing rectangles. In the game it will look like a piece is eaten and a new one
appears in a different place. Internally we are using a single variable for the piece.

g) Whenever a piece is eaten the length of the snake should increaset with one rectangle. Show and
explain how to implement this..
Tip: This can be solved by changing one of the previous functions.The length is to be increased but
is do you really need to add a new rectangle at the end?

h) Create a new function selfCollide() to test if the snake collides with itself. This happens if the
head collides with other rectangles in the snake body. Take care not to test if the head overlaps with
itself. It is up to you to decide return value and list of parameters.

i) A more open assignment
The code in the appendix contains enough information to figure out the public functions of the
Rectangle class. I this part the task is to create a subclass of Rectangle that we have called
MovingRectangle. This is a more specialized class and objects of this type have a direction and a
speed and will e.g. change direction if they hit the border. We will use this type for the pieces the
snake is hunting and it gives pieces that move around on screen which means a more exciting hunt.

Requirements:

1) The class inherits from Rectangle.
2) Create a complete declaration of MovingRectangle in your answer and write an implementation

of the constructor as well as implementiations of the two functions move()og place().
Return type and list of parameters are decided by you.

3) The class needs a constructor that initializes MovingRectangle-objects with a random position
within a window, as well as sets an initial speed and direction.

4) The member function place() is used to move the rectangle to a different random position and
give a new speed and direction. This function will be used by the constructor and whenever the
piece is eaten by a snake. The function will be comparable to placePiece() from assignment
2e), but you do not have to take care of potential collisions with the snake.

5) The member function move() is used to move the rectangle one step in the direction that is set for
the object. Given the instance MovingRectangle piece, the main idea is to make a call to
piece.move() in every iteration of the game-loop in main and the visual impression will be a
constant movement in this direction. If an object hits the border of the window it should change
direction and move away from the border.

6) Write code that demonstrates the techniques and principles of your solution, but it should be easy
to generalize and extend the code to a more complete solution.

7) Examples on how to control a movement can be found in the appendix.

Note! The assignment can be solved with a reasonable number of code lines.
Page 6 of 11

Assignment 3: If there is still time left (10%)
The constructor in TwoDArrayImpl allocates memory for the rows in a two diemnsional array and the
destructor takes care of deleting this memory. TwoDArrayImpl is a subclass of TwoDArrayBase.

a) There is a problem in the constructor of TwoDArrayImpl. In case new fails to allocate memory it
will cast a bad_alloc exception. We are catching this exception in main. The problem occurs if
you run out of memory during the allocation. The program will then jump directly to the catch-
statement in main and memory will not be release because delete testarr will never be executed.
Show how the constructor can be programmed to catch bad_alloc when allocation fails and
release allocated memory before resending the exception (and catching it again in main).

b) TwoDArrayImpl is a subclass of TwoDArrayBase. When declaring the pointer testarr as a super-
type, as shown in the code blow, you notice that the subtypes destructor never is called (independ-
ent of exception or not). What is the typical cause of this error?

int main() {
 try{
 TwoDArrayBase *testarr = new TwoDArrayImpl(100, 50000);
 delete testarr;
 }catch(std::bad_alloc &exc){
 cout << "Error allocating memory" << endl;
 }
}

class TwoDArrayBase {
public:
 TwoDArrayBase();
 ~TwoDArrayBase();
};

class TwoDArrayImpl : public TwoDArrayBase{
//Implemenentation of run-time allocated two-dimensional array
//using pointer to pointer technique
private:
 double **arr;
 int rows, columns;

public:
 TwoDArrayImpl(int rows, int columns) : arr(nullptr), rows(rows), columns(columns){
 //all pointers are initialized as nullptr during allocation
 arr = new double*[rows]{};
 for (int i = 0; i < rows; i++) {
 arr[i] = new double[columns]{};
 }
 }
 ~TwoDArrayImpl() {
 for (int i = 0; i < rows; i++) {
 delete [] arr[i];
 }
 delete [] arr;
 }
};

int main() {
 try{
 TwoDArrayImpl *testarr = new TwoDArrayImpl(100, 50000);
 delete testarr;
 }catch(bad_alloc &exc){
 cout << "Error allocating memory" << endl;
 }
}

Page 7 of 11

Appendix

Snake main-function with game-loop

A Window-object represents the on screen window of the game and a while loop is used to create a “living”
game. In every iteration the displayed image is wiped out and a new image is drawn. By drawing the same
objects at slightly different positions you create the impression of movement.

const int RECT_WIDTH = 10;
const int RECT_HEIGHT = 10;
const int WIN_WIDTH = 1200;
const int WIN_HEIGHT = 800;
//We are using constants for size of rectangles and size of window
//We do not set any specific colors and rely on default
//which is black background and white shapes

enum Direction {UP, DOWN, LEFT, RIGHT};

//Functions explained in the assignments
void initSnake(vector<Rectangle> &snake);
void placePiece(Rectangle &piece, const vector<Rectangle> &snake);
void moveSnake(vector<Rectangle> &snake, Direction direction);
bool detectCollision(const Rectangle &a, const Rectangle &b);

//getDirection retrieves information from the keyboard and updates the direction
//variable according to pressed arrow key and valid change of direction
void getDirection(Window &window, Direction &direction);

int main(){
 srand(time(0)); //Seeding rand() which is used by the functions
 Clock timer; //A timer is comparable to a stop watch
 Direction direction = RIGHT; //Set an initial movement direction of the snake

 Window window(WIN_WIDTH, WIN_HEIGHT, "snake"); // GUI window

 vector<Rectangle> snake; //Our snake is a collection of rectangles
 initSnake(snake); //initialized with 4 adjacent rectangles

 Rectangle piece; //The objekt that the snake is hunting
 piece.setSize(RECT_WIDTH, RECT_HEIGHT); //Setting size and position of piece
 placePiece(snake, piece);

 while (window.isOpen()){ //game loop that runs until window is closed

 getDirection(window, direction); //Updates the direction

 window.clear(); //Clears the screen

 if (timer.getElapsedMilliseconds() >= 100){ //Check if 0.1 ms has passed
 moveSnake(snake, direction);
 timer.restart(); //Reset/restart the timer
 }

 for (Rectangle &s: snake){
 window.draw(s); //Draw each rectangle of the snake on screen
 }
 window.draw(piece); //Draw the piece rectangle

 window.display(); //Display the screen
 }
}

Page 8 of 11

Placing rectangles next to each other

//Example code for drawing rectangles side by side along x-axis
//This code shows all Rectangle-functions you need.
//Coordinate (0, 0) is upper left corner of window.
//The position of a rectangle is its upper left corner.

const int size = 10; // example rectangle size
Rectangle first;
Rectangle second;

first.setSize(size, size); // set width and height
first.setPosition(250, 250); // set position of first rectangle on screen

second.setSize(size, size);
second.setPosition(first.getx() + size, first.gety());

window.draw(second);
window.draw(first);

Moving the snake

Create movement by adding one new rectangle (thick
line) at one end and remove one rectangle (dotted line)
from the other end.

In this example we create a movement towards the
right. Note that the snake-movement is not smooth but
stepwise. Every operation moves the snake in a step
equal to the size of the rectangle.

Start with 4 equivalently sized rectangles placed side by side

The placement of new rectangles decides how
the snake moves and turns on the screen.

direction == DOWN

direction == DOWN direction == RIGHT

direction == DOWN
Page 9 of 11

Collision detection

width2

(x1, y1)

(x2, y2)
The following statements are all true if
the rectangles overlap:

 x1 < x2 + width2
 x1 + width1 > x2
 y1 < y2 + height2
 height1 + y1 > y2

height1

height2

width1

Controlling the movement of an object

//Example code to incrementally change the position of an object
//Speed and direction can also be managed using a single variable for velocity
void movementexample(){
 int dx = -1, dy = 1; //moving down and towards left
 double speedx = 0.2, speedy = 0.2; //same speed along both axis
 double x = 500, y = 50; //example starting coordinate
 int width = 1000, height = 1000; //window size
 while(x > 0 && x < width && y > 0 && y < height){
 //game-loop to move the coordinate until it hits the edges
 x = x + (speedx * dx);
 y = y + (speedy * dy);
 cout << x << ", " << y << endl;
 }
}

Page 10 of 11

Sequence containers in C++ standard library

�

Headers <array> <vector> <deque> <forward_list> <list>

Members array vector deque forward_list list
 constructor implicit vector deque forward_list list

destructor implicit ~vector ~deque ~forward_list ~list
operator= implicit operator= operator= operator= operator=

iterators begin begin begin begin begin
before_begin

begin

end end end end end end
rbegin rbegin rbegin rbegin rbegin
rend rend rend rend rend

const
iterators

begin cbegin cbegin cbegin cbegin
cbefore_begin

cbegin

cend cend cend cend cend cend
crbegin crbegin crbegin crbegin crbegin
crend crend crend crend crend

capacity size size size size size
max_size max_size max_size max_size max_size max_size
empty empty empty empty empty empty
resize resize resize resize resize
shrink_to_fit shrink_to_fit shrink_to_fit
capacity capacity
reserve reserve

element
access

front front front front front front
back back back back back
operator[] operator[] operator[] operator[]
at at at at

modifiers assign assign assign assign assign
emplace emplace emplace emplace_after emplace
insert insert insert insert_after insert
erase erase erase erase_after erase
emplace_back emplace_back emplace_back emplace_back
push_back push_back push_back push_back
pop_back pop_back pop_back pop_back
emplace_front emplace_front emplace_front emplace_front
push_front push_front push_front push_front
pop_front pop_front pop_front pop_front
clear clear clear clear clear
swap swap swap swap swap swap

list
operations

splice splice_after splice
remove remove remove
remove_if remove_if remove_if
unique unique unique
merge merge merge
sort sort sort
reverse reverse reverse

Page 11 of 11

	Examination paper for TDT4102 - Procedural- and Objectoriented Programming
	Assignment 1: Implementing a class (45%)
	a) Implement the member function reduce(). It will be used to reduce/simplify the Rational- instance (fraction) it is called in context of. It is a helper function that e.g. is to be used in the constructor or operators that modifies the state of an ...
	1) The fraction is reduce with the assistance of the gcd()-function. gcd is an implementation of Euclid’s algorithm that will give you the greatest common divisor for to numbers. Given an object having n = 2 and d = 4 we can use gcd to find the gre...
	2) The function will make sure we always express the sign of the fraction using the nominator. We want the nominator to be positive or negative, but the denominator should always be a positive number - following ordinary rules for fractions. Given (n...
	b) Implement the constructor Rational(int n, int d). reduce() is of course intended to be used. It is the responsibility of the programmer that uses this class to prevent 0 as denominator.
	c) Implement the member function double to_double(). The funtion returns the fraction as a decimal number of type double. For Rational a(1,2) a call to a.to_double() will return 0.5.
	d) Implement the “less than”-operator as member of the class.
	e) Show how to use the “less than”-opertor in the implementation of the “is equal”-operator.
	f) Implement the postfix increment operator as member of the class.
	Incrementing increases the fraction with the value of 1. Given an object Rational a with the value of 1/3 (which means n = 1 and d = 3), then the statement a++; should yield 4/3 (n = 4 and d = 3) because we are adding 3/3 which is the same as 1. Reme...
	g) Implement as members the arithmetical opertors that are needed to support the following statement: a *= b * c; Where a, b and c all are Rational objects.
	h) Is it necessary to implement the assignment operator and/or the copy constructor for this class? Explain your answer.
	i) In C++ there are different integer types such as short, int, long and they can be signed or unsigned. There are also different decimal number types such as float and double.
	1) Declare Rational as a template-class where the type used for numerator and denominator is declared by the user of the class.
	2) Do you see any pitfalls in the declaration/use of such a class? Explain your answer
	j) How do you have to declare gdc() if you still want it as a part of the class, but want to make use of the function without an instance of Rational?
	We want to be able to write: int dvs = Rational::gcd(8, 10);
	k) The constructor Rational(int n, int d) could have been implemented to throw and exception of type invalid_argument if the denominator was initialized with 0. Would this have been a sufficient and practical solution to prevent integer division by z...
	l) Given that you want to support the following assignment:
	Rational r; r.denominator() = 5;
	How can this be achieved simply by changing the declaration of this function?
	Note! This is meant as a theoretical question and is not very realistic.

	Assignment 2: The Snake game (45%)
	a) Implement the function initSnake(). This function initializes the snake with 4 rectangles placed side by side approximately in the middle of the window.
	A snake is actually only a collection of rectangles. In the example code we implement the snake using vector<Rectangle>. The class Rectangle has a function setPosition() that is used to place rectangles in the window and get-functions to read the pos...
	b) Learn from examples in the appendix how the snake movement is to be implemented.
	1) The library type vector<> is actually not very suitable for our snake implementation. Why?
	2) What other container type in the library should you rather use?
	There is no need to change 2a) even if you suggest a different type.
	c) Implement the function moveSnake(). Calling this function once should move the snake one step in the direction given by the parameter. Assume that direction always is valid. You do not have to consider the case where the snake collides with the bo...
	d) Implement the function collisionTest() that is used to detect “collision” between rectangles. Collision means in practise that two rectangles overlap.
	All rectangles in this game are x- and y-aligned and we can use the straight-forward and simple testing suggested in the appendix.
	e) Implement the function placePiece(). The Rectangle-variable piece is the piece the snake is hunting. This function will update piece with a random position within the window, but should also make sure that the piece is not placed on top of the snake.
	f) Show and explain how and where in main you will use collisionTest() to check if the snake has “eaten” the piece. If the piece is eaten it should be updated with a new position.
	In practise this means that you check if the head of the snake overlaps with the piece-rectangle. What we refer to as the head of the snake will be the rectangle in the front, but what the front is will depend on the order you are storing rectangles....
	g) Whenever a piece is eaten the length of the snake should increaset with one rectangle. Show and explain how to implement this.. Tip: This can be solved by changing one of the previous functions.The length is to be increased but is do you really ne...
	h) Create a new function selfCollide() to test if the snake collides with itself. This happens if the head collides with other rectangles in the snake body. Take care not to test if the head overlaps with itself. It is up to you to decide return valu...
	i) A more open assignment The code in the appendix contains enough information to figure out the public functions of the Rectangle class. I this part the task is to create a subclass of Rectangle that we have called MovingRectangle. This is a more sp...
	1) The class inherits from Rectangle.
	2) Create a complete declaration of MovingRectangle in your answer and write an implementation of the constructor as well as implementiations of the two functions move()og place(). Return type and list of parameters are decided by you.
	3) The class needs a constructor that initializes MovingRectangle-objects with a random position within a window, as well as sets an initial speed and direction.
	4) The member function place() is used to move the rectangle to a different random position and give a new speed and direction. This function will be used by the constructor and whenever the piece is eaten by a snake. The function will be comparable ...
	5) The member function move() is used to move the rectangle one step in the direction that is set for the object. Given the instance MovingRectangle piece, the main idea is to make a call to piece.move() in every iteration of the game-loop in main an...
	6) Write code that demonstrates the techniques and principles of your solution, but it should be easy to generalize and extend the code to a more complete solution.
	7) Examples on how to control a movement can be found in the appendix. Note! The assignment can be solved with a reasonable number of code lines.

	Assignment 3: If there is still time left (10%)
	a) There is a problem in the constructor of TwoDArrayImpl. In case new fails to allocate memory it will cast a bad_alloc exception. We are catching this exception in main. The problem occurs if you run out of memory during the allocation. The program...
	b) TwoDArrayImpl is a subclass of TwoDArrayBase. When declaring the pointer testarr as a supertype, as shown in the code blow, you notice that the subtypes destructor never is called (independent of exception or not). What is the typical cause of thi...
	Snake main-function with game-loop
	Placing rectangles next to each other
	Moving the snake
	Collision detection
	Controlling the movement of an object
	Sequence containers in C++ standard library

