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Final exam in  
IT1105/TDT4120 Algorithms and Data Structures 

 
Exam date Thursday December 6 
Exam time 1500–1900 
Grading date Sunday January 6 
Language English 
Contact during exam Magnus Lie Hetland (ph. 91851949) 
Aids allowed All printed/handwritten; specific, simple calculator 
 
Please read the entire exam before you begin, use your time wisely, and prepare any questions 
before the lecturer arrives. Make and state assumptions where necessary. Please write short and 
concise answers. Long explanations that do not directly answer the problems will be given little 
or no consideration. Preferably write where indicated (i.e., without submitting extra sheets). 

Answer form for problem 1 
(See problem text on page 2. Wrong = 0 points, no answer = 1 point, correct = 4 points.) 

 Yes No Brief reasoning 

a £ £  
 
 

    
b £ £  

 
 

    
c £ £  

 
 

    
d £ £  

 
 

    
e £ £  

 
 

    
f £ £  

 
 

    
g £ £  

 
 

    
h £ £  
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Answer form for problem 2 
(See problem text on page 3. Wrong = 0 points, no answer = ¼ points, correct = 1 point.) 

Recursive 
calls 

Size, subprob-
lems 

Work in 
each call 

Recurrence Running  
  time 

One Reduced by 1 Constant T(n) =  Q(          ) 

One Halved Constant T(n) =  Q(          ) 

One Reduced by 1 Linear T(n) =  Q(          ) 

One Halved Linear T(n) =  Q(          ) 

Two Reduced by 1 Constant T(n) =  Q(          ) 

Two Halved Constant T(n) =  Q(          ) 

Two Reduced by 1 Linear T(n) =  Q(          ) 

Two Halved Linear T(n) =  Q(          ) 

 

Please answer problems 3 through 5 in boxes in the text. 

Problem 1 (32%) 
For each subproblem below, please check either «Yes» or «No», and very brief-
ly state your reasoning. Please use the answer form on page 1. 

Note: This problem is scored as follows: Wrong answers or wrong reasoning for a subproblem 
gives 0 points, unanswered subproblems give 1 point, and correct answer (including reasoning), 
4 points. In other words, an evaluation of our own knowledge is awarded – if you are less than 
25% certain of your answer (including reasoning) it pays to leave the answer blank. 

a. It is easier to find the edge out-degree of a node if we use adjacency ma-
trix representation than if we use adjacency lists. 

 

b. How we implement Quicksort has great impact on how vulnerable it is to 
unfavorable data sets. 

 

c. Assume that you sort n real numbers and then extract 10 numbers with 
indexes spread as evenly as possible from 1 to n. Could you have found 
the same elements without sorting, in linear time? 

 

d. Because of the UNION/FIND-SET-mechanism, Kruskal’s algorithm can find 
minimal spanning trees for disconnected graphs as well as connected. 

 

e. The basic method in the curriculum for finding maximum flow has an ex-
ponential worst case running time. 

 

f. Some NP-complete problems involve finding an optimal permutation of n 
elements. It is possible that some of these problems have a worst case 
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running time of Ω(n!) 
 

g. An algorithm takes the integer n as its only input and uses binary search to 
find an integer value in the interval [1, n] that is optimal (in some sense). 
Assume that each operation of the binary search takes constant time and 
that the binary search dominates the total running time. The algorithm has 
linear running time. 

 

h. Building a heap has the same expected, asymptotic running time as build-
ing a search tree. 

Problem 2 (8%) 
In the answer form on page 2 you see a table of running times for a set of recur-
sive algorithms. Fill in what’s missing. Assume T(0) = T(1) = Θ(1). 

Note: This problem is graded as follows, for each row as a whole: Wrong answers give 0 points, 
missing answers give ¼ points and correct answer (on both questions), 1 point. In other words, 
an evaluation of our own knowledge is awarded – if you are less than 25% certain of your an-
swer for a row it pays to leave the answer blank. 

Problem 3 (27%) 
Assume that you are to implement a data structure that lets you keep track of 
two things: (1) The order in which elements are added and removed, and 
(2) whether an elements is to be found in the structure. In other words, you want 
a structure that can work both as a FIFO queue and a set. 

a. How would you implement such a structure? Emphasize asymptotic run-
ning time. What is the running time for the different operations? (Use Θ 
notation and briefly state your reasoning.) 

  
Answer (12%): 
 
 
 
 
 
 
 
 
 
 

Assume you have a map of an archipelago in the form of a grid where each 
square is either sea/lake or land (assume that all edge squares are sea). You wish 
to write an algorithm with linear running time that counts how many islands are 
found on the map. 

Note: Each separate, connected segment of land counts as an island. In other 
words, islands in lakes on other islands are to be counted. 
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b. Briefly describe such an algorithm. 
  

Answer (8%): 
 
 
 
 
 
 
 
 

You have constructed a recursive algorithm that finds both the maximum and 
the minimum in an array. It works by recursively finding the maximum and min-
imum in each half, and then picking the maximum and minimum from each of 
the two answers. Assume that the size of the array is n = 2k, for an integer k. 

c. How many comparisons will your algorithm use? State your reasoning. 
Hint: The answer is not n–1 or 2n–2. 

  
Answer (7%): 
 
 
 
 
 
 
 
 

Problem 4 (7%) 
Consider the following algorithm. 

DOLOREM(ipsum, quia, dolor) 
amet ← ipsum[dolor] 
consectetur ← quia–1 
for adipisci ← quia to dolor–1 
 if ipsum[adipisci] ≤ amet: 
  consectetur ← consectetur + 1 
  ipsum[adipisci] ↔ ipsum[consectetur] 
ipsum[consectetur+1] ↔ ipsum[dolor] 
return consectetur+1 

NUNQUAM(ipsum, quia, dolor, velit) 
sit ← DOLOREM(ipsum, quia, dolor, quia) 
if sit < velit: 
 NUNQUAM(ipsum, velit, sit+1, dolor) 
else if sit > velit: 
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 NUNQUAM(ipsum, velit, quia, sit–1) 

 

a. What does the algorithm NUNQUAM do? (That is, what does it compute – 
what is its purpose? A summary of what steps it takes will give few or no 
points.) Assume that ipsum is a 1-indexed sequence. Make any other natu-
ral assumptions about the arguments to NUNQUAM. 

  
Answer (7%): 
 
 
 
 
 

Problem 5 (26%) 
Assume that you have a local computer network where every machine is linked 
to the others, directly or indirectly. The cables you have used have varying pric-
es (in whole kroner/NOK) and quality (a real number greater than or equal to 0 
and less than 10). You cannot assume any direct relationship between price and 
quality. 

You are to pick a set of cables for sale, and place the following requirements on 
the selection: 

• All machines must be connected, directly or indirectly, after the chosen 
cables have been removed. 

• All links remaining must have a quality of at least k. 

Given these requirements you are to find a set of cables that gives you the high-
est possible sales sum. 

a. Briefly describe an efficient algorithm that solves the problem in general. 
  

Answer (12%): 
 
 
 
 
 
 
 

After some thought you add a requirement: 

• If there are more than one optimal cable sets, you are to choose among 
them so that the remaining cables have the highest possible total quality. 

In other words you are still to find a set that gives you the highest possible sales 
sum, that doesn’t break up the network, and that lets each remaining cable have 



IT1105/TDT4120 · 2007–12–06 Stud.: 6/6 

a quality of at least k. Letting the remaining network have the highest possible 
total quality is an additional requirement. 

b. Describe briefly an efficient algorithm that solves the problem in general. 
  

Answer (7%): 
 
 
 
 
 
 
 

You have decided to use operating systems from a specific, commercial vendor. 
You have bought a license (valid for one machine) for each version of their 
newest operating system. Your goal is to have each your computers running one 
of a set of server programs you have written. The problem is that (1) not all op-
erating system versions can run on all machines, and (2) not all of your server 
programs can run on all the operating system versions. 

c. Briefly describe an efficient algorithm that decides whether it is possible to 
run all your server programs (assume that it is not possible to run two 
server programs on the same machine). 

  
Answer (7%): 
 
 
 
 
 
 
 
 
 
 
 


