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Language: English

Please read the entire exam before you start, plan your time, and prepare any questions
for when the teacher comes to the exam room. Make assumptions where necessary. Keep your
answers short and concise. Long explanations that do not directly answer the questions are
given no weight.

There are 20 subtasks. Each subtask counts for 5% of the final score.
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Problem 1

a) Describe how the Minimum Set Covering problem can be solved with the branch-and-
bound method. Describe only the procedures for branching and bounding (including the
pruning of sub-trees).
Solution:
Branching: Assign one as-of-yet unassigned set to be included in the set cover (left-hand
branch) or excluded from the set cover (right-hand branch).

Bounding: the pessimistic bound for the cost of the optimal solution is the smallest cost
of a solution seen so far (in a leaf node). The optimistic bound for the cost of the best
solution in a subtree is the number of sets included already in the path from the root
plus the minimum number of the remaining sets needed to produce a sum of cardinalities
that equals or exceeds the number of not-yet-covered objects. We prune a subtree if the
optimistic bound for the subtree is worse (has greater cost) than the pessimistic bound
for the cost of the optimal solution.

Problem 2

a) Define a neighborhood function that will allow the basic local search scheme to be applied
to the Minimum Set Covering problem.
Solution: A solution is a bit string giving inclusion/exclusion for each set. The
neighbors of a solution x are all solutions that both (i) can be obtained by flipping at
most one bit of x and (ii) represent valid set coverings. Students who propose a flip-a-bit
neighborhood without the feasibility requirement should get 50% score.

b) The makespan scheduling (MS) problem is a minimization problem where we have to find
a schedule for n jobs with processing times p1, p2, . . . , pn on m ≥ 2 identical processors
in such a way that all processors get at least one job, and the time until all jobs are
completed is minimized. A schedule is just an assignment of each job to a processor.

For example, an input instance of MS could have n = 3 jobs {1, 2, 3} with processing
times p1 = 3, p2 = 2, p3 = 1 and m = 2 processors. An optimal solution for this input
instance is the schedule that assigns the job 1 to the first processor and the jobs 2 and 3
to the second processor. We could write this schedule as a set of sets {{1}, {2, 3}}. The
cost (time to completion) of the optimal solution is 3.

A possible neighborhood for MS can be defined by letting the neighbors of a schedule x
be the set of all schedules obtainable from x by choosing one job from a processor with
more than one job, and then assigning the chosen job to any processor. The neighbors
of the schedule {{1}, {2, 3}} would be the set of three schedules
{{{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}}.
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Does there exist any input instances for MS where local search with this neighborhood can
get stuck in a local, non-global optimum? If you answer no, prove it. If you answer yes,
give an example input instance where local search could get stuck, and write the solution
at a local, non-global optimum for your example.
Solution: It can get stuck. An input example where it can get stuck is an instance with
two processors and jobs {1, 2, 3, 4} with sizes p1 = 1, p2 = 2, p3 = 2, p4 = 3. Here, we have
a global optimium at {{1, 4}, {2, 3}} and a local, non-global optimum at {{1, 2}, {3, 4}}.

c) Your friend claims to have found an exact polynomial-time searchable neighborhood for
an NP-hard problem X. Your friend claims that this proves that P=NP because every
problem in NP is polynomial-time reducible to X, and X can be solved in polynomial
time with ordinary local search using the newly found neighborhood. What is wrong
with your friend’s reasoning?
Solution: Existence of an exact polynomial-time searchable neighborhood does not
imply that the problem is solvable in polynomial time with local search, because local
search might still have to perform a superpolynomial number of transitions.

d) Give an example of an optimization problem for which there exists an exact polynomial-
time searchable neighborhood. It’s OK if the problem is a toy example that you invent
just for this exercise.
Solution: Toy example: Maximize the sum of a bit string with neighbors given by
flipping arbitrary bits. Non-toy example: Linear programming with the neighborhood
used by the SIMPLEX algorithm.

Problem 3

a) In the Maximum Clique Problem (MAX-CL) you are given a graph G = (V,E) and have
to find a subset S ⊆ V such that every pair of vertices in S has an edge between them
and the size of S is maximized. Reduce MAX-CL to IP or 0/1-LP and show how you
would relax it to (real-valued) LP.
Solution: Goal: maximum. |V | variables: xk is 1 if vertex k is part of the clique and 0
othervise. Constraints: For each pair of vertices i and j: xi + xj ≤ aij + 1, where aij is
1 if there is an edge between vertices i and j and 0 otherwise. Binarity constraints: For
each vertex i, xi ∈ {0, 1}. Relaxation: replace binarity constraints on xi with 0 ≤ xi ≤ 1.

b) Assume that you have an instance x of some maximization problem. You reduce it to an
instance I(x) of IP, relax I(x) to an instance Irel(x) of LP, and find the dual Dual(Irel(x)).
Let Opt(x) be the cost of an optimal solution to x. Express as precisely as possible what
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you can infer about the relationship between Opt(x) and the value α in each of the
following cases. Use the operators =, 6=, >, ≥, < or ≤ where applicable.

1. A feasible solution to I(x) has cost α.
Solution: Opt(x) ≥ α

2. An optimal solution to I(x) has cost α.
Solution: Opt(x) = α

3. A feasible solution to Irel(x) has cost α.
Solution: Nothing

4. An optimal solution to Irel(x) has cost α.
Solution: Opt(x) ≤ α

5. A feasible solution to Dual(Irel(x)) has cost α.
Solution: Opt(x) ≤ α

6. An optimal solution to Dual(Irel(x)) has cost α.
Solution: Opt(x) ≤ α

7. A feasible solution to Irel(x) has cost α, and a feasible solution to Dual(Irel(x)) also
has cost α.
Solution: Opt(x) ≤ α

8. An optimal solution to Irel(x) has cost α, and an optimal solution to Dual(Irel(x))
also has cost α.
Solution: Opt(x) ≤ α

9. A feasible solution to Irel(x) has cost α, a feasible solution to Dual(Irel(x)) also has
cost α, and a feasible solution to I(x) also has cost α.
Solution: Opt(x) = α

10. An optimal solution to Irel(x) has cost α, and an optimal solution to Dual(Irel(x))
also has cost α, and a feasible solution to I(x) also has cost α.
Solution: Opt(x) = α

c) Assume that you have an optimization problem which you reduce to IP and then relax
to LP. If you have a proof that the optimal solutions to the relaxed problem always have
integer values, what does this imply for the complexity class of the original problem?
Give a reason for your answer.
Solution: The original problem is in PO, because it can be reduced to linear program-
ming, which is in PO. You will also get full score if you answer P.

Problem 4 Consider the problem of choosing which people to invite for a party. Let Peop
be the set of people you could invite, and let f(x, y) be a function that for each pair of people
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x and y gives a non-negative integer that measures how familiar x and y are with each other.
We always have f(x, y) = f(y, x). You want to invite a subset Inv ⊆ Peop of people such that:

1. Each pair of different people a and b you invite have at least some familiarity with each
other. In other words,

∀(a, b ∈ Inv , a 6= b)f(a, b) > 0.

2. The sum of familiarity over all pairs of people you invite is maximized. In other words,∑
a,b∈Inv ,a 6=b

f(a, b)

is maximized.

a) Is this problem strongly NP-hard? Give a reason for your answer.
Solution: FIXME

Problem 5

a) Let’s pretend that you have to solve the Minimum Vertex Cover problem with a Ge-
netic Algorithm (GA). Specify the following components of a GA for this problem: (i)
representation of solutions as individuals, ii) the crossover operator, (iii) the mutation
operator, and (iv) the fitness function. Don’t explain GAs in general. Make it simple.
Solution: Representation: A bit string with one bit for each vertex, indicating whether
it’s in the cover or not Crossover oprator: First child gets first half of first parent and
second half of second parent. Second child gets what’s left. Mutation operator: Ran-
domly flip a bit. Fitness function: Fitness 0 if the candidate is not a valid vertex cover.
Otherwise, fitness 1

N
, where N is the sum of the bit string. The student should have a

reasonable plan for handling individuals that are not valid vertex covers, either in the
fitness function or in the crossover and mutation operators.

b) The schema theorem is based on the assumption of a 100% crossover rate. How would
the schema theorem change if the crossover rate was 0%? Give a reason for your answer.
Solution: The factor n−length(s)

n
would be dropped, because there is no longer any chance

to destroy a schema through crossover.

Problem 6

a) Approximation algorithms give guarantees for how inaccurate they are, even though the
optimum is unknown. How is this possible? Explain very briefly, in your own words.
Solution: The error is measured relative to an optimistic bound for the optimum.
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A riddle: I can’t necessarily give you the exact answer to your problem, but I can get as close
as you ask me to, in polynomial time (though that time may grow exponentially as a function
of my accuracy). I can even do this for any problems within any given distance from yours,
although the further away they are, the longer it will take.

b) Who am I?
Solution: A superstable PTAS.

For a given family of edge-weight functions in TSP4, you have found a way of constructing a
minimal/minimum spanning tree (MST) so that all the internal nodes have even degree, and
all the leaves can be matched at a cost of 1√

5
·OPT, where OPT is the cost of the optimum.

c) How would you use your MST and matching to create an approximation algorithm for
TSP4, and what would ε be?
Solution: Use them in Christofides’ algorithm, yielding ε = 1√

5
.

A pangram or holoalphabetic sentence for a given alphabet is a sentence where every character
of the alphabet occurs at least once. English examples include “The quick brown fox jumps over
the lazy dog,” and “Quick hijinx swiftly revamped gazebo.” Consider the following generalized,
simplified problem.

Simplified Pangram Problem (SPP)

Input: An alphabet Σ and a language (i.e., set of words) L ⊂ Σ∗, where |L| = n and |Σ| = m.

Constraints: M(Σ, L) = {S ⊆ L | Σ =
⋃

w∈S w} .

Costs: For every S ∈M(Σ, L), cost(S,Σ, L) = |S|.

Goal: minimum.

d) Describe an efficient approximation algorithm for SPP. What is the approximation ratio
(δ) for this algorithm?
Solution: This is simply the Set Cover Problem (SCP), which can be approximated
with the greedy algorithm, yielding δ = ln Σ + 1.

Problem 7 Let G be a connected graph, with |V (G)| ≥ 2. Consider the following approx-
imation algorithm for the minimum vertex cover problem (Min-VCP). Find a depth-first tree
T over G, and output the set S of all internal (non-leaf) nodes in T .
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a) Show that S is a vertex cover for G, but that it might not be, had we used breadth-first
search instead.
Solution: The only edges that could potentially not be covered by S would be edges
between two leaves u and v in T . With BFS, such could exist, but not with DFS: Once
DFS reaches u, it would immediately progress to v, making u an internal node.

b) Show that there is a matching M ⊆ E(G) such that |M | ≥ |S|/2.
Solution: Color each internal level of T red and black, alternatingly, and let the red and
black levels contain nr and nb nodes, respectively. Red and black matchings of size nr

and nb can be constructed from the internal nodes by connecting each to one arbitrarily
chosen child. We have |S| = nr + nb, so the result follows.

c) If OPT is the minimum size of a vertex cover for G, show that |S| ≤ 2 ·OPT.
Solution: Every edge in the matching M must be covered, so OPT ≥ |M | ≥ |S|/2.

Problem 8 The so-called restricted shortest path problem (RSP) is defined as follows:
You are given a graph G with n nodes and m edges. Each edge {i, j} ∈ E(G) has a positive
integer-valued cost c(i, j), and a positive integer-valued delay d(i, j). The cost (delay) of a
path is the sum of the costs (delays) along all of its edges. We wish to find the minimum cost
over s-t-paths (for two given nodes s, t ∈ V (G)) whose total delay does not exceed a given
threshold D. RSP is NP-hard, but there is an FPTAS for the problem, with a running time
of O(mn/ε).

Now consider the problem RSPk, where the maximum cost over all the edges is less than nk,
for some constant k.

a) Show how the FPTAS for RSP can be used to solve RSPk in polynomial time. What is
the running time? (Explain your reasoning.)
Solution: The idea is to set ε to a value where the approximation must be identical to
the (integer-valued) optimum, OPT, that is, (1 + ε) · OPT < OPT + 1 . We know that
OPT < (n − 1)nk, so we can simply let ε = 1/((n − 1)nk). The running time is then
O(mn/ε) = O(mn(n− 1)nk) = O(mnk+2).

Problem 9 A hitting set is defined as follows: Let U be the universe of objects and let
S be a set of sets {S1, S2, . . . , Sn} where Si ⊆ U for all Si ∈ S. A hitting set for S is a set
H ⊆ U that intersects with all sets in S. In other words, for all Si ∈ S, we have H ∩ Si 6= ∅.
We call |H| the size of the hitting set.

For example, if we have U = {a, b, c, d}, and S = {{a, b}, {b, c, d}, {c, d}}, then H = {b, c} is a
hitting set for S, and its size is 2.
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The hitting set problem (HSP) is a decision problem defined as follows: You are given a universe
of objects U , a set of sets S = {S1, S2, . . . , Sn} where Si ⊆ U for all Si ∈ S, and a positive
integer k. The task is to answer yes if there exists a hitting set for S of size k, and no if not.

For example, consider the problem instance U = {a, b, c, d}, S = {{a, b, c}, {a, c}, {d}}, k = 2.
The answer for this instance is yes. The possible hitting sets are {a, d} and {c, d}. If we change
k to 1, the answer is no.

a) Consider the parameterization

Pat(U,S, k) = max{k, d(S)}

of HSP, where d(S) is the size of the largest set in S. Give a Pat-parameterized polyno-
mial time algorithm for HSP.

Hint: See Appendix
Solution: While there are more than kd(S)+1d(S)! sets in S, there is a sunflower S of
size k + 1 with intersection S∩, which can be found in polynomial time. If S∩ = ∅, there
is no solution. If S∩ 6= ∅ the problem can be reduced to ((S − S) ∪ {S∩}, k).

After a polynomial amount of such reductions, the number of sets in S is bounded by
kd(S)+1d(S)!. Since the size of each set is bounded by d(S), the input size is bounded by
d(S) · kd(S)+1d(S)!, which is bounded by a function of Pat(U,S, k).

Appendix
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K∩

K1

K2

K3

K4

K5
K6

K7

Sunflower: Sets K = {K1, K2, . . . , Kk} form a sunflower if there exists a set K∩ such that
for all Ki, Kj ∈ K, i 6= j, the intersection Ki ∩Kj is equal to K∩.

The sunflower lemma: If a collection of sets K = {K1, K2, . . . , Km} consists of pd+1 ·d! sets,
and all sets in K has size less than or equal to d, then K contains a sunflower of size p + 1.
Furthermore, this sunflower can be found in polynomial time.

Observation: Assume that an instance (S, k) of the hitting set problem contains a sunflower
K of size k + 1 with intersection set K∩. If K∩ = ∅, there are k + 1 disjoint sets, so there is
no solution. If K∩ 6= ∅, the problem is equivalent to removing the sunflower sets from S, and
adding S∩ instead.


