
  
 

  
 

ANSWERS to TDT4136-2020 Fall exam 
 
 
 

SEARCH 
 
 
 a) 

 Initial_state: The initial state is the starting star system S 
 States: The states are the set of all states reachable from the initial. state by a 

sequence of actions. 
 Actions: The actions are the possible action available in a state. Given a state s, 

ACTIONS(s) returns all actions that can be performed in s. For instance ACTIONS(C) = 
{Go(S); Go(B); Go(H); Go(G)} 

• Path_cost: The path cost is the sum of costs of the individual actions 
along the path. They are shown on the graph. For instance 
COST(In(S);GO(B)) = 1 
• Transition_model: Given a state and action, this returns the resulting 
planet: RESULT(In(B); Go(C)) = In(C) 
• Goal_test: The goal test checks whether a given state is the goal state. 
Here the goal is the singleton set {In(G)} 
 
 
 
 
b) 

 
 
 
c) 
 • Path found: SCHG, cost = 6. Not optimal. 
• Reason: Heuristic is inconsistent. 
• Fix: Change e.g h(C) = 3, then A* will find SBCHG which has a cost 
of 5 and is optimal. 
 
d)  
 



  
 

  
 

 
 
e). See Figure 2 below. 
a: No nodes are pruned. 
b: Search the tree from a right to left manner instead. 
This corresponds to rearranging the nodes so that the three looks like. See figure 3 
 



  
 

  
 

 
Figure 2 
 
 

 
Figure 3 
 
 
 
f).   Found solution is not optimal, optimal solution would be SCDG 



  
 

  
 

 
 
 
 

LOGIC 
 
1) In this case it doesn’t really matter which representation one picks, both can 

represent the board with the same amount of symbols. Because it doesn’t matter I 
just picked propositional logic. 
 

𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠௫,௬ =  Square (X, Y) has sparkles 
𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠௫,௬ = Square X Y has diamonds 

𝑅𝑒𝑑𝐺𝑙𝑜𝑤௫,௬ = Square X Y has a red glow 
… and so on for Lava and Player 
Board state is then: 𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠ଵ,ଵ ∧ 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠ଵ,ଶ ∧ 𝑅𝑒𝑑𝐺𝑙𝑜𝑤ଵ,ଶ ∧ 𝑆𝑝𝑎𝑟𝑘𝑒𝑠ଵ,ଷ ∧ 𝐿𝑎𝑣𝑎ଵ,ଷ ∧

𝑅𝑒𝑑𝐺𝑙𝑜𝑤ଶ,ଵ ∧ 𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠ଶ,ଶ ∧ 𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠ଶ,ଷ ∧ 𝑅𝑒𝑑𝐺𝑙𝑜𝑤ଶ,ଷ ∧ 𝐿𝑎𝑣𝑎ଵ,ଷ ∧ 𝑅𝑒𝑑𝐺𝑙𝑜𝑤ଷ,ଶ ∧

𝑃𝑙𝑎𝑦𝑒𝑟ଷ,ଶ ∧ 𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠ଷ,ଶ ∧ 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠ଷ,ଷ 
 

2)  
1) ∀𝑥 ∀𝑦൫𝑆𝑞𝑢𝑎𝑟𝑒(𝑦) ∧ 𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) ∧ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑥, 𝑦) ∧ Has(y, Diamonds) ⇒

𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠(𝑥)൯ 
2) ∀𝑥 ∀𝑦൫𝑆𝑞𝑢𝑎𝑟𝑒(𝑦) ∧ 𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) ∧ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑥, 𝑦) ∧ 𝐻𝑎𝑠(𝑦, Lava) ⇒

𝑅𝑒𝑑𝐺𝑙𝑜𝑤(𝑥)൯ 
3) ∀𝑥(𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) ∧ 𝐻𝑎𝑠(𝑥, 𝑃𝑙𝑎𝑦𝑒𝑟) ∧ 𝐻𝑎𝑠(𝑥, 𝐿𝑎𝑣𝑎) ⇒ 𝐺𝑎𝑚𝑒𝑂𝑣𝑒𝑟) 
4) ¬∃𝑦൫𝐷𝑖𝑎𝑚𝑜𝑛𝑑(𝑦) ∧ ¬𝐻𝑎𝑠(𝑃𝑙𝑎𝑦𝑒𝑟, 𝑦)൯ ⇒ 𝐺𝑎𝑚𝑒𝑊𝑜𝑛  
5) ∀𝑥∀𝑧൫𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) ∧ 𝑃𝑙𝑎𝑦𝑒𝑟 ∧ 𝐷𝑖𝑎𝑚𝑜𝑛𝑑(𝑧) ∧ 𝐻𝑎𝑠(𝑥, 𝑃𝑙𝑎𝑦𝑒𝑟) ∧ 𝐻𝑎𝑠(𝑥, 𝑧) ⇒

𝐻𝑎𝑠(𝑃𝑙𝑎𝑦𝑒𝑟, 𝑧)൯ 

6) ∀𝑥 ൬ቀ𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) ∧ 𝐶𝑎𝑛𝑀𝑜𝑣𝑒(𝑃𝑙𝑎𝑦𝑒𝑟, 𝑥) ∧ ∃𝑦൫𝑆𝑞𝑢𝑎𝑟𝑒(𝑦) ∧ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑦, 𝑥) ∧

𝐻𝑎𝑠(𝑦, 𝑅𝑒𝑑𝐺𝑙𝑜𝑤)൯ቁ ⇒ ∃𝑦൫𝑆𝑞𝑢𝑎𝑟𝑒(𝑦) ∧ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑦, 𝑥) ∧ 𝐻𝑎𝑠(𝑦, 𝑆𝑝𝑎𝑟𝑘𝑙𝑒𝑠)൯൰ 



  
 

  
 

7) ∀𝑥∀𝑦൫𝑆𝑞𝑢𝑎𝑟𝑒(𝑥) ∧ 𝑆𝑞𝑢𝑎𝑟𝑒(𝑦) ∧ 𝐶𝑎𝑛𝑀𝑜𝑣𝑒(𝑃𝑙𝑎𝑦𝑒𝑟, 𝑥) ∧ 𝐻𝑎𝑠(𝑥, 𝑃𝑙𝑎𝑦𝑒𝑟) ⇒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑥, 𝑦)൯ 
3)  No, the player can not win. This is because of rule 6. The player can never move to (2, 1) 
because it has a red glow but does not sparkle, which means that the player can never move 
to (2, -1) 
 
4)  
a, b, d already in CNF 
c: ∀𝑥 ∀𝑦൫𝑃𝑒𝑟𝑠𝑜𝑛(𝑥) ∧ 𝐴𝑓𝑟𝑎𝑖𝑑(𝑥, 𝑦) ⇒ ¬ 𝐶𝑙𝑜𝑠𝑒(𝑥, 𝑦)൯ 
gives ∀𝑥∀𝑦൫¬𝑃𝑒𝑟𝑠𝑜𝑛(𝑥) ∨ ¬𝐴𝑓𝑟𝑎𝑖𝑑(𝑥, 𝑦) ∨ ¬ 𝐶𝑙𝑜𝑠𝑒(𝑥, 𝑦)൯ because implication is 
equivalent to this 
gives ¬𝑃𝑒𝑟𝑠𝑜𝑛(𝑥ଵ) ∨ ¬𝐴𝑓𝑟𝑎𝑖𝑑(𝑥ଵ, 𝑦ଵ) ∨ ¬ 𝐶𝑙𝑜𝑠𝑒(𝑥ଵ, 𝑦ଵ) by removing universal quantifiers. 
E: Same steps as c gives 

¬𝐶𝑙𝑜𝑠𝑒(𝑥_2, 𝑦_2)  ∨ ¬𝐶𝑙𝑜𝑠𝑒(𝑦_2, 𝑧_2)  ∨ 𝐶𝑙𝑜𝑠𝑒(𝑥_2, 𝑧_2)) 
F: Same steps as c gives 

¬𝐶𝑙𝑜𝑠𝑒(𝑥ଷ, 𝑦ଷ) ∨ 𝐶𝑙𝑜𝑠𝑒(𝑥ଷ, 𝑦ଷ) 
G: Same steps as c gives 

¬𝐶𝑎𝑛𝑀𝑖𝑛𝑒(𝑥ସ, 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠) ∨ 𝐶𝑙𝑜𝑠𝑒(𝑥ସ, 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠) 
“Richard does not mine diamonds” is 

¬𝐶𝑎𝑛𝑀𝑖𝑛𝑒(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠) 
So refutation is:  
H: 𝐶𝑎𝑛𝑀𝑖𝑛𝑒(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠) 
H and G gives I: Close(Richard, Diamonds) 
B and D gives J: ¬𝐴𝑓𝑟𝑎𝑖𝑑(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑦ଵ) ∨ ¬𝐶𝑙𝑜𝑠𝑒(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑦ଵ) 
A and J gives K: ¬𝐶𝑙𝑜𝑠𝑒(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐿𝑎𝑣𝑎) 
K and E gives L: ¬𝐶𝑙𝑜𝑠𝑒(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑦ଶ) ∧ ¬𝐶𝑙𝑜𝑠𝑒(𝑦ଶ, 𝐿𝑎𝑣𝑎) 
L and I gives M: ¬𝐶𝑙𝑜𝑠𝑒(𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠, 𝐿𝑎𝑣𝑎) 
M and D gives empty, concluding proof by resolution refutation.  
 
5) 
Here RedGlow = RG, Diamonds = D 
a. Valid, RedGlow may be false 
b. Neither, RedGlow can’t be false and true at the same time 
c. Valid, RedGlow is always either true or false 
d. Valid, equivalent to c 
e. Satisfiable, true when RedGlow and Diamonds have same truth value 
f. Satisfiable, true when RedGlow and Diamonds do not have same truth value 
g. Satisfiable, equivalent to (¬𝑅𝑒𝑑𝐺𝑙𝑜𝑤 ∧ ¬𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠) ∨ (𝑅𝑒𝑑𝐺𝑙𝑜𝑤 ∧ 𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑠) ∨
𝑅𝑒𝑑𝐺𝑙𝑜𝑤 which is true f.ex. when RedGlow is true and false when RedGlow is false and 
Diamonds is true.  

 
 
 

 
 
 
 



  
 

  
 

 
 

 
Constraint Satisfaction Problem: 

 
1. Domains based on the favorite colours and plant types of persons :  

Peter:  {LG-Calat1, LG-Calat2, LG-Phil1} 
Anette: { V-Calat3, B-Phil2, DG-Calat3 } 
Rudolf: {V-Phil1, V-Calat1, B-Phil2 } 
Daisy: { V-Calat1, B-Phil2} 
Femke: { V-Phil1, V-Calat1, V-Calat2, V-Calat3, DG-Phil1, DG-Calat1, DG-
Calat2, DG-Calat3, Y-Phil1, Y-calat1, Y-Calat2, Y-Calat3} 
 

2. Search tree for “backtracking with forward checking”. 
 
Assign  Peter: LG-Calat1, do inference: 
Some domains change because Peter now has “reserved” LG colour and 

Calat1 plan.t Nobody else can take them. Below are all the domains: 
 
A={V-Calat3, B-Phil2, DG-Calat3} ,  
R={V-Phil1, B-Phil2} 
D has a constraint with P. Plant(P)= Plant(D). Then 
D={-) Empty. Backtrack.  
 
Assign  Per: LG-Calat2 
Anette: { V-Calat3, B-Phil2, DG-Calat3 } 
Rudolf: {V-Phil1, V-Calat1, B-Phil2 } 
Daisy: { V-Calat1} 
Femke: { V-Phil1, V-Calat1, ,V-Calat3, DG-Phil1, DG-Calat1, DG-Calat3, Y-Phil1, 
Y-calat1, Y-Calat3} 
 
Assign Anette= V-Calat3. Do forward check 
Rudolf: {B-Phil2 } 
Daisy: { } Empty. Stop backtrack 
 
Assign  Anette= B-Phil2 
Rudolf: {V-Callat1, V-Phil1 } 
Daisy: {V-Calat1} 
Femke: {V-Phil1, DG-Phil1, Y-Phil1} 
 
 
Assign  Rudolf= V-Calat1 
Daisy={} Empty . Backtract 
 
 



  
 

  
 

Assign  Rudolf= V-Phil1 
Daisy={} Empty . Backtract 
 
 
 
Assign Anette= DG-Calat3 
Rudolf: {V-Phil1, V-Calat1, B-Phil2 } 
Daisy: { V-Calat1 } 
Femke: { V-Calat1 }. Must have same plant category as Anette, i.e., Calat. 
 
Assign Rudolf= V-Calat1 
Daisy: {- }Empty, backtrack 
 
Assign Rudolf= V-Phil1 
Daisy: { B-Calat1} must have same same plant category as P, which is Calat 
Femke: { Y-Calat1} . must have same plant category as Anette 
 
Assign Daisy= B-Calat1 
Femke: { -} Empty, Backtrack 

 
Assign Rudolf= B-Phil2 
D: {V-Calat1} 
Femke: {Y-calat1, Y-Calat1} same category as Anette. 
 
Assign D= V-Calat1 
Femke: {-} Empty backtrack 
 



  
 

  
 

 
 

 
3. Search tree for “backtracking search with forward checking and propagating 

through domains that are reduced to singleton domains.” 
 
Assign  P: LG-Calat1.  
Do inference: Some domains change because person P now has “reserved” LG 
colour and Calat1 plan. Nobody else can take them. Below are all the domains: 
 
A={V-Calat3, B-Phil2, DG-Calat3} ,  
R={V-Phil1, B-Phil2} 
D has a constraint with P. It cannot have Calat1 but must have a Calat plant 
because Plant-category(P) = Plant-category(D). Then 
D={ -}. Empty domain. Backtrack. 
 
 
Assign P= LG-Calat2 
Anette: { V-Calat3, B-Phil2, DG-Calat3 } 
Rudolf: {V-Phil1, V-Calat1, B-Phil2 } 
Daisy: { V-Calat1}. Singleton domain, propagate - Constraint on plant category 
with P.  
 
Anette: { B-Phil2, DG-Calat3 } 
Rudolf: {B-Phil2 } Singleton domain, propagate 
 
Anette: {DG-Calat3}. Singleton propagate 

start

P

A

R

D

F

LG-Calat1 LG-Calat2 LG-Phil1
P

A

R

D

F

V-Calat3

x

x
B-Phil2

x

DG-Calat3

Don’t do/show more

V-Calat1
x

V-Phil1 B-Phil2

B-Calat1 V-Calat1
x x

V-Calat1 V-Phil1

x x



  
 

  
 

Femke cannot have LG, V, B, DG. Cannot have Calat2,Calat1,Calat3, and Phil2. 
Must have the same plant category as Anette which is Calat. 
Femke:{Empty} Backtrack 
 
Assign P= LG-Phil1 
Anette: {V-Calat3, B-Phil2, DG-Calat3 } 
Rudolf: {V-Calat1, B-Phil2} 
Daisy: { B-Phil2}-since must have plant in same category as Peter 
 
Anette: { V-Calat3, DG-Calat3 } 
Rudolf: {V-Calat1} singleton 
Anette: {DG-Calat3 }. Cannot have V because of Rudolf propagation. 
Femke: {Y-Calat2} 
 

 

 
 
 
 
                                 

 
 

 
 

PlANNING 
1)  

a) Flaw1. Precondition Smooth(B) of paint(B) is not satisfied 
Flaw2. putOn(A,B)  threatens paint(B) –because it makes A not free 
Flaw3. putOn(A,B)  threatens paint(A) - –because it makes B not free 
Flaw4. putOn(A,B)  threatens sand(A) - because it makes A not free 

start

P

A

R

D

F

LG-Calat1 LG-Calat2 LG-Phil1

DG-Calat3

V-Calat1

B-Phil2

Y-Calat2

P

A

R

D

F

x x



  
 

  
 

So, need for ordering links. 
b) Flaw 1: add action.    Sand(B) 

Flaw 2: paint B must be executed before putOn(A,B), i.e., an ordering link is 
added 
Flaw 3: paint B must be executed before putOn(A,B), i.e., an ordering link is 
added 
Flaw 4: putOn(A,B) comes after sand(A) as well as newly added sand(B) 

c)  (sand(A) OR sand(B)) ; (Paint(A) OR paint(B)) ; putOn(A,B) 
 

 
2) No constraints, they can be executed in parallel. 
3) Both return TIK as the plan. Its postconditions (C and D) satisfies the goal  𝐶 ∧ 𝐷.  

 

  
 

 
 
 
 
 
 

 
GAME THEORY  : 

 
1) The Nash equilibrium is when all students chose the same integer. No student 

will have an incentive to move away from that number because moving to any 
other number will end up in zero payoff. There is no other Nash because any 
student who has chosen a less-often-chosen number would benefit from 
switching to the most-often one. Also if there are two numbers that are most 
often, students who have chosen these will benefit from switching to the other 
most-often number. 
 

2) All strategy profiles except (B,B) are pareto optimal. (B,A) is also social optimum.  
3) We eliminate a and b because c dominates them. Then on the remaining matrix, 

we can eliminate S and R as they both are dominated by T. Then the solution is 
(c,T). 

 
 
 

 
 

 
 
 



  
 

  
 

SHORT QUESTIONS 
 
 

1) LOCAL SEARCH QUEST 
(a) Eval(a)= 1- # attacking pairs(a)= 1-5= -4 

Eval(b) = 1-# attacking pairs(b)= 1-9= -8 
 

(b) See textbook p.126, Figure 4.5. Simulated Annealing algorithm. The alg decides to 
move if Delta-E> 0. If smaller, then moves with probability e(Delta-E/T). 
Delta E=  (1-9)-(1-5)= -4. Moves with probability 1/e. 
 
 

2) Ethical Issues 
 
This is an open question and I wanted to see how students think/reason. Any 
justified answer is accepted. Student connect consequentialism to the whole 
agent notion, rationalism, search strategies, more specific search problems such 
as adversarial search, as well as game theory.  The connection with the game 
theory and the utilities is particularly interesting.  
 

3) PEAS and Characteristics of the Environment   
Environment: partially observable, deterministic (but may be stochastic if the sensor is 
not good and the robot may be blown away by the mine), continuous, static, sequential 
(mines are most probably places with a some distance between them. If one found, then 
the next one will be at least in 30 cm distance). The answers may differ based on the 
assumptions. So, various answers are accepted here. 

 
4) Translation from Semantic Networks to Logic 

Translate the sematic network representations shown in the figure to logic 
representations. The following is the outset. I accepted also variations such as  

Isa(elephant,mammal), color(elephant, grey) type of answers without 
quantification.  

 



  
 

  
 

 
 

 
 
 

 
 
 
 

("x)(elephant(x) -> mammal(x))

color(clyde, white)

("x)(elephant(x) -> color(x, grey))

Elephant Mammal
is a

Clyde White

color

Elephant Grey

color


