
TDT4136 Intro to AI - Final Exam Fall 2022 - Solution
Last version updated on 2023-01-03

Overview

There are multiple correct answers in many of the questions, the solutions presented here show only one possible
answer.
Some tasks are asking for partial solution to the problem. For the sake of completeness, solutions presented here
solve the complete problems, which is not expected from students.
For the sake of correctness, truth tables are computed automatically.

Task 1: Theoretical questions

1.1) Why might we want to use a factored state representation instead of an atomic state representation?

If we use an atomic representation, we only know that two states are distinct. By using a factored representation we can
get features of the state and use them to assess, compare, generalize states when using heuristics or evaluation
functions. Factored representations also allow better handling of uncertainty and incomplete information, assigning it to
specific features of the state, e.g. position and orientation of an object.

1.2) What is the benefit of having a model in a model-base agent?

By having a model, we have a state in order to better keep track of the uncertainty of the unobserved part of the
environment. It allows us to make predictions about the future state of the environment, which allows us to select actions
that achieve its goals.

1.3) Why is consistency a desired property of a heuristic?

Because when used in A*, nodes are expanded only once - simplifying the algorithm and making it more efficient. It
guarantees that once node is expanded, the cost of reaching it is the lowest possible. Otherwise, there might be another
path to this node with lower cost so that we might need to expand it again to reach an optimal solution. It is also an
indication that our heuristic is calculating appropriately because it's admissible, and hence required to reach an optimal
solution.

1.4) What is the difference between incremental and local search?

Incremental search algorithms start with a partial solution and then gradually build on that solution until a complete
solution is found.

1.5) Why do we have mutations in genetic algorithms?

To explore the neighbourhood of some solutions by making small alterations to their genotype we expect improvements in
their fitness, as opposed to crossover which is a bigger alteration to exploit the "good" solutions.

1.6) How can we apply minimax to a 3-player game?

Use vectors of values instead of single values for each node. For terminal states, this vector gives utility of the state from
each player's perspective. For nonterminal state, the value is the highest values of the consequent states from the
perspective of the player making a choice - playing its turn.

1.7) Why is Monte Carlo tree search less sensitive to evaluation function errors than alpha-beta search?

Monte Carlo runs multiple simulations to evaluate the potential value of each move, rather than relying on a pre-defined
evaluation function.

1.8) Explain why the ignore-delete-list heuristic is an admissible heuristic for planning

By removing the constraints and ignoring the actions that undo progress, we can generate a heuristic that "can only get
better" (and hence is admissible), so the length of the plan is the best way to know how good is it as any search method
would solve it without the need for backtracking.

1.9) Entailment () is not part of the logical representation language, nor a connective in any logic, Then, what is
entailment? Entailment can be implemented by resolution/refutation or forward/backward chaining in propositional logic.
Which inference rule is used in resolution refutation and which one is used in forward/backward chaining?

Entailment usually means: what is on the right can be derived from the left by using elements from the same logic
system. It's not only "derivation" but also carries a semantic meaning, since what is on the right is a tautology given what
is on the left. It can be obtained through model checking, inference rules or any other logic proof method. In resolution we
use the resolution inference rule, disjunctive syllogism or unit resolution. In forward/backward chaining we use modus
ponens.

1.10) What is the main disadvantage of propositional logic? What are the four new elements introduced in the syntax of
first order logic to address this issue?

The main disadvantage of propositional logic is its limited expressive power, as it can only address what is true or not
about a single object. It is hard or impossible to encode the statements about similar objects, relations, and groups of
objects. An extension to this was First Order Logic (FOL), which introduces variables, quantifiers, predicates and
functions, making it easy to express truth values of categories and classes, as well as relationships between such
objects.

Task 2: Intelligent Agents - Grocery Store Robot

Grocery store robots can navigate autonomously through the store to scan shelves and report on inventory. In other
words, it reports the quantity of products currently available on the shelves. The robot is equipped with cameras, an
ultrasonic sensor (measures distances to obstacles) and a collision sensor.

2.1) Specify:

performance measure
environment properties
actuators and sensors

Explain your specification, including the answer for the following questions:

Why this performance measure makes sense for this environment?
With respect to each of the properties, why this environment can be characterized in this way?

Solution.

The PEAS description could be similar to this:

Performance measure: Safe, fast, maximize scanned products, minimize collisions on other aisle users.
Environment properties: Partially observable, Single agent, Deterministic, Sequential, Dynamic, Continuous
Actuators and Sensors: Camera, scanner, ultrasonic sensor, collision sensor, display, wheels.

We want the robot to scan all products while not hitting anyone nor anything in the process. The agent needs to be aware
of its surroundings and identify aisles where it can move through, and objects and people that should avoid. It should also
distinguish between the types of products available so that it can notify/classify when a product is running out. The
cameras, scanners and sensors will be used to attain these goals as well as for navigation. A display might be a good
idea for debugging and configuration. Wheels are necessary for movement.

The environment is partially observable since there are limitations on what the sensors can perceive. It is single agent, as
the customers and rest of the staff can be modelled as part of the environment and do not affect the decisions the robot
should make. It is Deterministic as there are no stochasticity in the actions or state transitions. It is sequential, since the
actions of the future are dependent on decisions made in the past. Lastly, it is continuous as it is intended for use in the
real world, with continuous mobility and perception.

2.2) What agent type will work best for this environment? Explain why. Make a visualization showing the main
components for this type of agent. Briefly describe each component and interaction between them.

Solution. A store robot could have the following architecture, which is that of a model-based agent:

The model-based architecture was chosen for the agent because of the partial observability of the environment (as the
agent can only see a few meters away, and not behind aisles and shelves.).

The sensors feed the agent on the state of the environment (which is dependent on its actions and on how the
environment evolves). Then, the agent can update the model of the world (what it will be after acting) depending on
what its actions do. The agent will finally choose an action inspired by its goals, which will tell the actuators what
action to perform and how to affect the environment.

Task 3: Solving problems by searching: Wolf, goat and cabbage

A farmer went to the market and purchased a wolf, a goat, and a cabbage. On his way home, the farmer came to the
bank of a river and rented a boat. But to cross the river by boat, the farmer could carry only himself and a single one of
his purchases: the wolf, the goat, or the cabbage. If left unattended together, the wolf would eat the goat, or the goat
would eat the cabbage. The farmer's challenge is to carry himself and his purchases to the far bank of the river, leaving
each purchase intact.

3.1 Draw part of a state-space graph for this problem, with nodes that are 3 or less edges away from the start node.
Explain what nodes and edges represent. Mark start and end nodes.

Solution.

Here is a possible complete graph. Students only need to show the first 4 levels.

3.2) Apply iterative deepening search with depth limit of 3. Enumerate nodes in the order they are expanded.

Solution. Nodes are marked depending if they are on the (i)nitial or the (o)ther side. We explore always the smaller
number first (alphabetical order):

depth=0
1. check 111-i at level=0, not goal, add children to stack: [011-o, 101-o, 110-o, 111-o]. Choose 011-o.
2. check 011-o at level=1, cutoff: increase depth.

depth=1
1. check 111-i at level=0, not goal, add children to stack: [011-o, 101-o, 110-o, 111-o]. Choose 011-o.
2. check 011-o at level=1, not goal, no children, go back, choose 101-o.
3. check 101-o at level=1, not goal, add children to stack: [101-i]. Choose 101-i.
4. check 101-i at level=2, cutoff: increase depth.

depth=2
1. check 111-i at level=0, not goal, add children to stack: [011-o, 101-o, 110-o, 111-o]. Choose 011-o.
2. check 011-o at level=1, not goal, no children, go back, choose 101-o.
3. check 101-o at level=1, not goal, add children to stack: [101-i]. Choose 101-i.
4. check 101-i at level=2, not goal, add children to stack: [001-o, 100-o]. Choose 001-o.
5. check 001-o at level=3, cutoff: increase depth.

depth=3
1. check 111-i at level=0, not goal, add children to stack: [011-o, 101-o, 110-o, 111-o]. Choose 011-o.
2. check 011-o at level=1, not goal, no children, go back, choose 101-o.
3. check 101-o at level=1, not goal, add children to stack: [101-i]. Choose 101-i.
4. check 101-i at level=2, not goal, add children to stack: [001-o, 100-o]. Choose 001-o.
5. check 001-o at level=3, not goal, add children to stack: [001-i, 011-i]. Choose 001-i.
6. check 001-i, at level=4, cutoff: that's it.

3.3) Design an admissible heuristic for this problem. Describe the heuristic and explain why it is admissible.

Solution. Again, the solution depends on what they wrote and the convention they are using. Following what we
presented, a nice admissible heuristic is to count the number of zeros, as each zero means that one of the purchases is
already on the other side.

It is an admissible heuristic because it never overestimates the cost of getting to the goal. It is also consistent due to
actions closer to the goal having more 0s than actions closer to the start.

Task 4: Constraint Satisfaction Problems - Four digit number

In this problem, you are trying to find a four-digit number satisfying the following conditions:

1. The number is odd
2. The number only contains the digits 1, 2, 3, 4 and 5
3. Each digit (except for the leftmost) is strictly larger that the digit to its left

4.1) Formulate this problem as a CSP: 4.1.1) Visualize this problem as a constraint graph. Explain what nodes and edges
represent. 4.1.2) Apply unary constraints (condition 1) and show domains.

Solution. A CSP can be defined using a triple like , where

Variables:
Domains:
Constraints

Notes:

⧺ is the concatenate operator
The constraint «... is odd» can also be expressed in many other ways.

Each node represents a variable while each edge represents a binary constraint . Arrows are important
since the "greater than" relation is not bidirectional.

4.2) Solve this problem using backtracking with the following heuristics:

Use Minimum remaining values for variable selection
Use Least constraining value for value selection

Show each step with updated domains of the variables:

Solution.

First of all, here's how each heuristic works:

Minimum remaining values (also known as Max-conflicts) always selects the most constrained variable first.
Least constraining values (Min-conflicts) always selects the value with the minimum conflicts on the neighbors.

Second, I want to point out some remarks of this specific problem (instance) to make it easier to solve (given the limited
time and that we have reasoning minds, unlike computers):

All the binary constraints in the problem form what is known as an strict order (in this case, total), so the problem has
some additional implicit constraints:

Since is greater than , and is greater than all the rest, then is also greater than all the rest.
This means that for all , and for all . Which means that is dependent on three variables,
and so on. The final problem ends up looking something similar to this:

Which affects the variable selection process.

Regarding the selected values, in order for the concatenation of all digits to be odd, the value of needs to be odd,
therefore we have an additional implicit constraint:

We can also simplify (since all values need to be odd) as. We end up with a new updated set of domains:

So the final instance is .

PropositionalbLet be the set of unassigned variables. For simplicity, consistency will only be checked using and not
. The assignment would then be:

1. :

MaxConflicts:
:

MinConflicts = 5
2. Domain updates:

3. :
MaxConflicts:

:
MinConflicts = 4
Consistency: 5 > 4, check.

4. Domain updates:

5. :
MaxConflicts:

: {1, 2, 3}
MinConflicts: 2 (2 and 3 have the same number of conflicts, but 2 is first chronologically)
Consistency: 5 > 4, 4 > 2, check.

6. Domain updates:

7. :
MaxConflicts:

:
MinConflicts: 1
Consistency: 5 > 4, 4 > 2, 2 > 1.

8. Global constraint check:
, check.

9. Success.

Therefore, assignment is

For graders: Students might have used AC3 or forward checking to simplify the problem. These should be considered
acceptable answers, no points deduced from the score.

Task 5: Propositional logic - Boxes with gold

Three boxes are presented to you. One contains gold, the other two are empty. Each box has imprinted on it a clue as to
its contents. The clues are:

Box 1: The gold is not here
Box 2: The gold is not here
Box 3: The gold is in Box 2

Only one message is true, the other two are false. Which box has the gold? Solve the puzzle using propositional logic by
completing the following steps:

5.1) Let stand for the gold is in the -th box, where . Formalize the following statements of the problem in
propositional logic:

One box contains gold, the other two are empty
Only one message is true, the other two are false. Do the logical equivalent if needed.

Solution. This means we have 3 variables, . The statements S are the following:

: one box contains gold, the other two are empty.
: Only one message is true, the other two are false.

Since we don't have quantifiers in Propositional logic, we need the full specification: either one of the boxes contain it but
the others don't, so:

Notice how each clause (enclosed in parentheses) is and AND as it will always be true.

For we need the information about the messages. Let be the -th message:

 says "not me", therefore
 says "not me", therefore
 says "Box 2", therefore

Then we can formalize :

And now we substitute with the actual values of the messages:

And simplify:

(5.1a) is obtained replacing the double negation for the truth values. Then a contradiction is obtained in the first clause,
while identical values can be grouped together (in the second and third clauses) to obtain (5.1.b). Finally, a contradiction
always results in a false statement and hence cancelling the first clause in (5.1b). Expression (5.1c) shows the final
expression .

You can further reduce the expression (from 5.1.c and onwards) by using the distributivity of conjunction over disjunction.

5.2) Compute the truth table for expressions and simplified , which we call , and make an inference about which
box has the gold.

Solution. The solution for this is using the Python package ttg which stands for truth table generator.

We use the object Truths and instantiate it using a list of symbols (vars), and then a list of strings representing the
conditions we want to test.

First, I am making a table comparing both the original statement as well as the simplified version, , to demonstrate
that they are equivalent:

B1 B2 B3 (~(B1) and B2 and ~(B2)) or (B1 and (~B2) and (~B2)) or (B1 and B2 and B2) (B1 and ~(B2)) or (B1 and B2)

1 1 1 1 1 1

2 1 1 0 1 1

3 1 0 1 1 1

4 1 0 0 1 1

5 0 1 1 0 0

6 0 1 0 0 0

7 0 0 1 0 0

8 0 0 0 0 0

The table shows how both original s2 and simplified s3 are equivalent as both columns are identical, which means
our simplification was correct.

Now using the tables for both and we get:

B1 B2 B3
(B1 and (~B2) and (~B3)) or ((~B1) and
B2 and (~B3)) or ((~B1) and (~B2) and

B3)

(B1 and ~
(B2)) or (B1

and B2)

((B1 and (~B2) and (~B3)) or ((~B1) and B2 and (~B3)) or
((~B1) and (~B2) and B3)) and ((B1 and ~(B2)) or (B1 and

B2))

1 1 1 1 0 1 0

2 1 1 0 0 1 0

3 1 0 1 0 1 0

4 1 0 0 1 1 1

5 0 1 1 0 0 0

6 0 1 0 1 0 0

7 0 0 1 1 0 0

8 0 0 0 0 0 0

Considering that both AND are true statements, then only the rows evaluated to 1 on both columns are our viable
options. I went ahead and made an AND between them which is presented in the last column. This last column has a
single true row, which is row 4. If we look at that interpretation, we get:

which complies with the information: only one box says the truth, and the other two lie. Hence we know that box has
the gold.

5.3) Instead, if resolution refutation should be used for inference, how would you define the knowledge base and
query ? And what should be achieved to prove the entailment ?

Solution. Since we know both statements and , we can use them as the rules for our Knowledge Base (KB). Both
rules are already in Conjunctive Normal Form, so we don't need to do anything.

Our queries could as follows. However, in order to use refutation we need to negate the query. This would generate a
contradiction when using the KB, and hence means that our assumption (the opposite of our query) was wrong, from
where it follows that the original query is true.

Query 1: has the gold, so is
Query 2: has the gold, so is
Query 3: has the gold, so is

This means that the KB would consist of and either or . Then we could add to KB and the resolution
process starts, by turns and as well.

Task 6: Planning - Monkey and bananas

A monkey in a laboratory wants to get some bananas which are hanging on the ceiling out of reach. However, a box that
could enable the monkey to reach the bananas (if the monkey were to climb onto it) is available nearby. Consider the
following:

Initially, the monkey is at , the bananas at and the box at .
Both the monkey and the box have height , but if the monkey climbs onto the box he will have height ,
which is the same as the bananas.
The actions available to the monkey include:

 from one place to another
 an object from one place to another

 onto on an object
 from an object (NB! This one is no longer used in the exam. Left up for completeness purposes.)

 an object (only if the object and the monkey are in the same place and at the same height)
 an object (NB! This one is no longer used in the exam. Left up for completeness purposes.)

7 .1) Specify the problem using Planning Domain Definition Language (PDDL). Include initial and goal state descriptions
as well as actions schemas.

Solution.

Let's start with the constants: for monkey, and are heights. Additionally, some helper function symbols are
introduced for clarity: and in case is on top of , or is holding , respectively. This makes it
easier for us to declare the state of the world for such cases.

The actions are then:

,
:

:
,

:
:

,
:

:
,

:
:

,
:

:
,

:
:

The initial state is:

And the goal state is

7.2) Solve the problem using backwards search (regression). Show the first 3 steps in one of the branches, including
actions and states after/before each action.

⊨

CSP = (X,D,C)

X = {x1, x2, x3, x4}

D = {di ∣ di = {1 : 5}, i ∈ [1 : 4]}

C = {x2 > x1, x3 > x2, x4 > x3} ∪ {(x1 ⧺ x2 ⧺ x3 ⧺ x4 mod 2 = 1)}

xi ∈ X c ∈ C

x4 x3 x3 x4

xi xi > x1, … xi i > 1 x4

xi x4

Cu = {x4 mod 2 = 1}

d4

d4u = {1, 3, 5}

Du = D ∖d4 ∪ d4u

CSP = (X,Du,C ∪ Cu)

U C

C ∪ Cu

U {x1, x2, x3, x4}

x4

d4 {1, 3, 5}

d1 = {1 : 4}

d2 = {1 : 4}

d3 = {1 : 4}

U {x1, x2, x3}

x3

d3 {1, 2, 3, 4}

d1 = {1 : 3}

d2 = {1 : 3}

U {x1, x2}

x2

d2

d1 = {1}

U {x1}

x1

d1 {1}

(x1 ⧺ x2 ⧺ x3 ⧺ x4 mod 2 = 1)

1245 mod 2 = 1

{x1 = 1, x2 = 2, x3 = 4, x3 = 5}

Bi i i ∈ [1 : 3]

Bi, i ∈ [1 : 3]

S1

S2

S1 = (B1 ∧ ¬B2 ∧ ¬B3) ∨ (¬B1 ∧ B2 ∧ ¬B3) ∨ (¬B1 ∧ ¬B2 ∧ B3)

S2 Mi i

B1 M1 = ¬B1

B2 M2 = ¬B2

B3 M3 = B2

S2

S2 = (M1 ∧ ¬M2 ∧ ¬M3) ∨ (¬M1 ∧ M2 ∧ ¬M3) ∨ (¬M1 ∧ ¬M2 ∧ M3)

S2 = (¬B1 ∧ ¬¬B2 ∧ ¬B2) ∨ (¬¬B1 ∧ ¬B2 ∧ ¬B2) ∨ (¬¬B1 ∧ ¬¬B2 ∧ B2)

S2 = (¬B1 ∧ B2 ∧ ¬B2) ∨ (B1 ∧ ¬B2 ∧ ¬B2) ∨ (B1 ∧ B2 ∧ B2)

= (¬B1 ∧ F) ∨ (B1 ∧ ¬B2) ∨ (B1 ∧ B2)

= (B1 ∧ ¬B2) ∨ (B1 ∧ B2)

= B1 ∧ (¬B2 ∨ B2)

= B1 ∧ T

= B1

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

(5.1f)

S2

S1 S2 S3

In [5]: import ttg

S1 = (B1 ∧ ¬B2 ∧ ¬B3) ∨ (¬B1 ∧ B2 ∧ ¬B3) ∨ (¬B1 ∧ ¬B2 ∧ B3)

S2 S3

In [6]: vars = ["B1", "B2", "B3"]

s11 = "(B1 and (~B2) and (~B3))"

s12 = "((~B1) and B2 and (~B3))"

s13 = "((~B1) and (~B2) and B3)"

s21 = "(~(B1) and B2 and ~(B2))"

s22 = "(B1 and (~B2) and (~B2))"

s23 = "(B1 and B2 and B2)"

s1 = f"{s11} or {s12} or {s13}"

s2 = f"{s21} or {s22} or {s23}"

s3 = "(B1 and ~(B2)) or (B1 and B2)"

ttg.Truths(vars, [s2, s3]).as_pandas()

Out[6]:

S1 S3

In [7]: ttg.Truths(vars, [s1, s3, f"({s1}) and ({s3})"]).as_pandas()

Out[7]:

S1 S3

B1 = T ,B2 = F ,B3 = F

B1

KB

α KB ⊨ α

S1 S3

B1 α B1

B2 α B2

B3 α B3

S1 S2 S3 ¬B1

¬B2 ¬B3

A B C

Low High

Go

Push

ClimbUp

ClimbDown

Grab

Release

M High Low

On(x, y) Holding(x, y) x y x y

Action(Go(from, to)

PRECOND At(M, from)

EFFECT ¬At(M, from) ∧ At(M, to))

Action(Push(obj, from, to)

PRECOND At(M, from) ∧ At(obj, from) ∧ Holding(M, obj)

EFFECT ¬At(M, from) ∧ ¬At(obj, from) ∧ At(M, to) ∧ At(obj, to))

Action(ClimbUp(obj, loc)

PRECOND At(M, loc) ∧ At(obj, loc) ∧ Height(M,Low) ∧ Height(obj,Low)

EFFECT ¬Height(M,Low) ∧ Height(M,High) ∧ On(M, obj))

Action(ClimbDown(obj, loc)

PRECOND At(M, loc) ∧ At(obj, loc) ∧ Height(M,High),On(M, obj)

EFFECT ¬Height(M,High) ∧ ¬On(M, obj) ∧ Height(M,Low))

Action(Grab(obj, loc, h)

PRECOND At(M, loc) ∧ At(obj, loc) ∧ Height(M, h) ∧ Height(obj, h)

EFFECT Holding(M, obj) ∧ ¬At(obj, loc) ∧ ¬Height(obj, h))

Action(Release(obj, loc)

PRECOND At(M, loc) ∧ Holding(M, obj)

EFFECT At(obj, loc) ∧ Height(obj,Low) ∧ ¬Holding(M, obj)) □

Init(At(M,A) ∧ At(Bananas,B) ∧ (Box,C)

∧ Height(M,Low) ∧ Height(Bananas,High) ∧ Height(Box,Low)) □

Goal(Holding(M,Bananas))

https://pypi.org/project/truth-table-generator/

NB! This question now asks for only the first three steps. This solution shows the whole plan for completeness, and
describes how the state looks after every action in the plan.

Solution. Using backwards search what we do is start from the goal and continue searching back to the start. We list
the plan as well as the state after every action:

Since , then for to be , it had to them:

To them, should have been at the same height () and same place (), which means it would have had to
 the at :

To the at location , should have Pushed the there, but for that it had to Grab it and then
Release. Let's go one step at a time:

To let go off the , it should have had to it first. However, since it was ed from the previous location, it
was bed on the previous location. Therefore it was ed to location from its previous location, :

To the from , should have bed it first:

 should have been at in order to the , and since its starting location was not then it would have had to
 from its previous location to the location of the , :

Then, we can compare the state to the initial state:

The only difference is the position of , , which is a for . Hence, the final plan is:

P S

Goal(Holding(M,Bananas)) M Holding Bananas Grab

P = [Grab(M,Bananas)]

S = (Holding(M,Bananas))

Grab M High B

ClimbUp Box B

P = [ClimbUp(Box,B),Grab(M,Bananas)]

S = (At(M,B) ∧ At(Bananas,B) ∧ At(Box,B)

∧ Height(M,High) ∧ Height(Bananas,High) ∧ Height(Box,Low) ∧ On(M,Box))

ClimbUp Box B M Box

P = [Release(Box,B),ClimbUp(Box,B),Grab(M,Bananas)]

S = (At(M,B) ∧ At(Bananas,B) ∧ At(Box,B)

∧ Height(M,Low) ∧ Height(Bananas,High) ∧ Height(Box,Low))

Box Grab Push

Grab Push B C

P = [Push(Box,C,B),Release(Box,B),ClimbUp(Box,B),Grab(M,Bananas)]

S = (At(M,B) ∧ At(Bananas,B) ∧ At(Box,B)

∧ Height(M,Low) ∧ Height(Bananas,High) ∧ Height(Box,Low) ∧ Holding(M,Box))

Push Box C M Grab

P = [Grab(Box,C),Push(Box,C,B),Release(Box,B),ClimbUp(Box,B),Grab(M,Bananas)]

S = (At(M,C) ∧ At(Bananas,B) ∧ At(Box,C)

∧ Height(M,Low) ∧ Height(Bananas,High) ∧ Height(Box,Low) ∧ Holding(M,Box))

M C Grab Box C

Go A Box C

P = [Go(A,C),Grab(Box,C),Push(Box,C,B),Release(Box,B),ClimbUp(Box,B),Grab(M,Bananas)]

S = (At(M,C) ∧ At(Bananas,B) ∧ At(Box,C)

∧ Height(M,Low) ∧ Height(Bananas,High) ∧ Height(Box,Low))

S

Init(At(M,A) ∧ At(Bananas,B) ∧ (Box,C)

∧ Height(M,Low) ∧ Height(Bananas,High) ∧ Height(Box,Low))

M At(M,A) PRECOND Go(A,C)

P = [Go(A,C),Grab(Box,C),Push(Box,C,B),Release(Box,B),ClimbUp(Box,B),Grab(M,Bananas)]

	TDT4136 Intro to AI - Final Exam Fall 2022 - Solution
	∙ Overview
	∙ Task 1: Theoretical questions
	∙ Task 2: Intelligent Agents - Grocery Store Robot
	∙ Task 3: Solving problems by searching: Wolf, goat and cabbage
	∙ Task 4: Constraint Satisfaction Problems - Four digit number
	∙ Task 5: Propositional logic - Boxes with gold
	∙ Task 6: Planning - Monkey and bananas

