
Page 1 out of 7

TRIAL EXAM

TDT4165 PROGRAMMING LANGUAGES
No printed or handwritten material is allowed.

Part 1 Multiple Choice

For each subtask, choose the one answer that you think is the most correct.

a) Which of the following functions is a correct Append function?

A: fun {Append L1 L2}

case L1

of nil then L2

[] H|T then H|{Append T L1}

end

end

B: fun {Append L1 L2}

case L2

of nil then L1

[] H|T then {Append T L1}|H

end

end

C: fun {Append L1 L2}

case L1

of nil then L2

[] H|T then H|{Append L1 L2}

else raise notAListException end

end

end

D: fun {Append L1 L2}

case L1#L2

of nil#L then L

[] L#nil then L

[] (H|T)#L then H|{Append T L}

end

end

b) Consider the following execution state of the abstract machine in the computation model of
the declarative kernel language:

([({X Y R}, {X->a, Y->b, Z->c, R->d})],

{a->(proc {$ Y R} R=Y+Z end, {Z->e})

b->5, c->7, d, e->3})

What will be the next execution state?

A: There will be no next state.

B: ([],

{a->(proc {$ Y R} R=Y+Z end, {Z->e})

b->5, c->7, d->8, e->3})

C: ([],

{a->(proc {$ Y R} R=Y+Z end, {Z->e})

b->5, c->7, d->10, e->3})

D: ([(R=Y+Z, {xY->b, Z->e, R->d})],

{a->(proc {$ Y R} R=Y+Z end, {Z->e})

b->5, c->7, d, e->3})

c) Which properties(s) of the following grammar would be problematic for parsing with a left-
to-right recursive-descent parser?

Page 2 out of 7

<s> ::= <s> <s>

| if <s> then <s> else <s> end

| <t>

<t> ::= hip | hop

A: Left-recursiveness

B: Right-recursiveness

C: Left- and right-recursiveness

D: Ambiguity

d) Mozart uses lexical scoping in function calls. We wish to extend the semantics of the kernel
language so that we can also perform function calls with dynamic scoping. For this we
introduce the following syntax:

dyn {<x> <y>1 ... <y>n}

In addition, we must define the semantics of the expression by giving a rule for how the
abstract machine should interpret the expression.

The semantic statement is:

(dyn {<x> <y>1 ... <y>n}, E)

Execution consists of the following actions:

• If the activation condition is true (E(〈x〉) is determined), then do the following
actions:

– If E(〈x〉) is not a procedure value or is a procedure with a number of
arguments different from n, then raise an error condition.

– If E(〈x〉) has the form (proc {$ 〈z〉1, ... 〈z〉n} 〈s〉 end, CE) then
push on the stack.

• If the activation condition is false, then suspend execution.

Which of the following should go in the empty space in the rule above?

A: (<s>, CE + { <z>1->E(<y>1), ..., <z>n->E(<y>n) })

B: (<s>, E + { <z>1->CE(<y>1), ..., <z>n->CE(<y>n)})

C: (<s>, E + { <z>1->E(<y>1), ..., <z>n->E(<y>n)})

D: (<s>, E + { <y>1->E(<z>1), ..., <y>n->E(<z>n)})

e) Consider the following type specification:

<Samling T> ::= null |

ord(tekst:<String> verdi:<T> ene:<Samling T> andre:<Samling T>)

Which of the following is a correct instance of Samling <Int>>?

A: ord(tekst:[101 110 101] verdi:0

ene:ord(tekst:’’andre’’ verdi:0 ene:null andre:null)

andre:ord(tekst:nil verdi:0 ene:null andre:null))

Page 3 out of 7

B: ord(tekst:’’ene’’ verdi:null

ene:ord(tekst:’’andre’’ verdi:null ene:null andre:null)

andre:ord(tekst:’’tredje’’ verdi:null ene:null andre:null))

C: ord(tekst:’’ene’’ verdi:0

ene:ord(tekst:’’andre’’ verdi:0 ene:nil andre:nil)

andre:ord(tekst:nil verdi:0 ene:nil andre:nil))

D: ord(tekst:’ene’ verdi:0

ene:ord(tekst:’andre’ verdi:0 ene:null andre:null)

andre:ord(tekst:’tredje’ verdi:0 ene:null andre:null))

E: None of the above.

f) Which of the following functions will run with constant stack size?

fun {F1 A B}

if A==0 then B

else {F1 A-1 B+A}

end

end

fun {F2 A B}

if A\=0 then {F1 A-1 B+A}

else B

end

end

A: Neither.

B: F1 but not F2.

C: F2 but not F1.

D: Both.

g) Lazy execution . . .

A: is incompatible with functional programming.

B: is incompatible with relational programming.

C: is incompatible with object-oriented programming.

D: is compatible with functional, relational and object-oriented programming.

h) Dataflow execution means that:

A: threads can execute in parallel without explicit scheduling.

B: threads must synchronize at all varible bindings.

C: an operation waits until all its arguments are bound before executing.

D: a function will always return the same value if called with the same arguments.

i) In the following procedure, which parameter passing method is simulated?

proc {Increment A}

B={NewCell @A}

in

B:=@B+1

A:=@B

end

Page 4 out of 7

A: Call by reference

B: Call by variable

C: Call by value

D: Call by value-result

j) Which statement about explicit state is wrong?

A: Explicit state removes some limitations of declarative programming

B: An explicit state in a procedure is a state whose lifetime extends over more than one
procedure call without being present in the procedure’s arguments

C: Oz does not directly support explicit state

D: A component programmed with explicit state gives the component a sense of long time
memory

E: Abstract Data Types can be written without explicit state, but these ADTs can not be
modified after thay have been created

k) Consider the following buffer.

declare

class A

meth init skip end

meth which

{Browse a}

end

end

class B from A

meth which

{Browse b}

end

end

X = {New B init}

{X which}

If the buffer was fed, what would show in the browser and what type of binding is used for
the method invocation?

A: a, dynamic binding

B: a, static binding

C: b, dynamic binding

D: b, static binding

l) Which statement about multiple inheritance is wrong?

A: Multiple inheritance may be problematic if the superclasses have a common ancestor
class with attributes.

B: A programming language with direct multiple inheritance must be specially adapted to
handle inheritance conflicts.

C: Multiple inheritance works better when highly different abstractions are combined than
when abstractions with concepts in common are combined.

Page 5 out of 7

D: Multiple inheritance can only be done from generic superclasses.

m) Ambiguous grammmars . . .

A: are impossible to parse with.

B: are often used in natural language processsing.

C: does not define languages but language families.

D: cannot be written with BNF syntax.

n) Which of the following features are supported in the relational computation model but not
in pure Prolog?

A: Higher-order programming.

B: Non-determinism.

C: Operational semantics of logic programs.

D: Explicit state.

o) How does the textbook classify the Java programming language in terms of computation
models?

A: Eager, stateful, non-concurrent.

B: Eager, non-stateful, concurrent.

C: Eager, stateful, concurrent.

D: Lazy, stateful, concurrent.

Part 2 Loops

a) Write a function {For I1 I2 I3 P} that applies the unary procedure P to integers from I1
to I2 proceeding in steps of size I3. For example,

{For 1 11 3 Browse}

should display the numbers 1, 4, 7, and 10 in the browser window, whereas

{For 11 1 3 Browse}

should display the numbers 11, 8, 5, and 2. (The description above is taken from the docu-
mentation of the Oz loop module. You may of course not use that module in your imple-
mentation.)

b) Suppose we wanted to introduce this kind of for loops in the declarative kernel language.
Invent a suitable syntax for this and define it using BNF.

c) Write structural operational rules defining the behaviour of these for loops using the notation
of chapter 13 of the textbook.

Task 3

Part 3 Word lists

Page 6 out of 7

a) Write a function HasWord in Oz that takes a word and a list of words as input and returns
true if the word is in the list and false otherwise. The words are represented by atoms.
For example, the call {HasWord [gabi hans fritz anna] anna} should return true.

b) We are going to make something that might resemble a search engine: Using the function
you wrote in a), write a function Search that takes a word and two word lists as input,
starts two threads, one that searches for the word in the first list and one that searches for it
in the second list, and returns 1 or 2 depending on which list has the word. You may assume
that the word always exists in one but not both lists.

c) We are going to change the search function so that we don’t have to give the lists as input
each time, but without having the lists built anew for each function call. Bind the identifier
Search to a local statement that defines the word lists and returns the search function.
The search function will thus be bound to local word lists. The search function must use
threads as in b) above.

Part 4 Paradigms

Bondesjakk is a game where two players take turns in putting tokens on a grid. A player wins
when he manages to get five consecutive tokens on the grid. Suppose you were given the task of
creating a program that can play Bondesjakk against a human player. The program must have a
graphical user interface for communicating with the player, and it must be able to select relatively
good moves so that the game won’t be too easy for the human.

a) Write a short and concise evaluation of the usefulness of the following paradigms for this
problem. Do not write more than one page.

• Imperative programming

• Functional programming

• Object oriented programming

• Logic programming

b) It is possible to combine elements of many paradigms in a single program. Do you think this
is a good or a bad idea in general? Give reasons for your answer.

Part 5 Parsing

You are going to write a recursive descent parser in Oz that recognizes the following grammar:

<prog> ::= (nothing) | <prog> ’->’ <stmt>

<stmt> ::= <asg> | <loop>

<asg> ::= <name> ’:=’ <value>

<loop> ::= ’where’ <bool expr> ’do’ <stmt>

<bool expr> ::= <name> ’<’ <value>

(nothing) is a special token that stands for the empty string. Assume that ’->’, ’:=’, ’where’,
’do’ and ’<’ are reduced to atoms by a lexical analysator that has also made tuples name(L) for
<name> and val(V) for <value>, where L is a list of the characters in the name and V is an integer
equal to the constant-value. Don’t spend time on error handling. The built-in exception-raising
and error handling of Mozart is sufficient. Use unification etc. when this can make the code shorter.

Page 7 out of 7

a) Does the grammer have a structure that is suitable for parsing by recursive-descent? Explain?

If is is not suitable, show the equivalency-transformations that must be made to obtain a
suitable grammar. It is recommended that you write in EBNF notation.

b) Write a function {BoolExpr In ?Out} that recognizes a 〈 bool expr 〉 given as the start
of the first parameter, e.g. the list [name([j o n]) ’<’ val(4) ...]. The function should
bind ’. . . ’, i.e. the rest of the list, to the second parameter and return a tuple containing the
available information in what was recognized.

c) Write corresponding functions for the rest of the grammar. Build a tuple prog(...) that
holds the information for a whole 〈prog〉,settLik(...) for a whole 〈asg〉 and lokke(...)

for a 〈loop〉 The following call:

{Prog

[’->’ name([o l e]) ’:=’ val(3)

’->’ ’where’ name([j o n]) ’<’ val(4)

’do’ name([j o n]) ’:=’ val(7)]

nil}

Could for example give the following result:

prog(settLik([o l e] 3)

prog(lokke(mindreEnn([j o n] 4) settLik([j o n] 7)) nil))

