Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

EXAM IN COURSE TDT 4165
PROGRAMMING LANGUAGES
WITH A SOLUTION

Tuesday December 6, 2005, 9.00 13.00

ENGELSK

Contact during the exam:
Ole Edsberg, TIf 952 81 586

Exam aid code: C

No written material is permitted.
The officially approved calculator is allowed.

The exam was created by Ole Edsberg. (date/signature)

The quality of the exam was approved by Per Holager. (date/signature)

Read all of the following before you start making your answers:

e Answer briefly and concisely. Unclear and unnecessarily long answers will receive lower grades.
e All programming problems must be solved with 0z.

e You may use the following functions and procedures from the textbook, without defining them:
Append, Drop, FoldL, FoldR, ForAll, Length, Map, Max, Min, Member, Reverse, Take, Solve,
SolveAll.

Multiple Choice

Fill in your answers on the answer sheet on the last page.

Only one of the alternatives for each subproblem is correct.

Page 1 of 25

Problem 1: (20 %)

a)

Consider the following functions:

fun {FoldR L F U}
case L
of nil then U
[1 XIL1 then {F X {FoldR L1 F U}}
end
end

fun {IterSum Xs}
case Xs
of nil then O
[HIT then H+{IterSum T}
end
end

Which of the functions will execute with constant stack size?

1. FoldR but not IterSum.
2. IterSum but not FoldR.
3. Both.

4. Neither.

Solution: 4. Neither.
b)
Which of the following statements about purely functional programming in the declarative, sequen-
tial computation model is the most correct?
1. Every program component is either a function or a procedure.
2. Thread synchronization is done with dataflow variables.
3. Variables are never unbound.

4. The execution of function calls is delayed until the result is needed.

Solution: 3. Variables are never unbound.

c)
Which programming language is more expressive, pure Prolog or the relational computation model
from chapter 9 of the textbook?

1. Pure Prolog.

Page 2 of 25

2. The relational computation model.
3. Neither.

4. The question is not meaningful.

Solution: 2. The relational computation model.

d)

Consider the following procedure in the relational computation model:

proc {Member 7A B 7C}
case B
of nil then C=false
[] HIT then choice H=A C=true [] {Member A T C} end
end
end

Which of the following logical expressions is a correct logical semantics for the procedure?

1. Ya,b,c.(member(a,b,c) —
(b=mnil Nc= false) V (3h,t.(b = hl|t A ((h=a A c=true) V (member(a,t,c))))))

2. Va,b,c.(member(a,b,c) <
(b=mnil Nc= false) V (Vh,t.(b = hl|t A ((h = a A c = true) V (member(a,t,c))))))

3. Va,b,c.(member(a,b,c) <
(b=nil V¢ = false) A (3h,t.(b=h|t V ((h=aV c=true) A (member(a,t,c))))))

4. VYa,b, c.(member(a, b, c) <
(b=nil Ve = false) A (Vh,t.(b=h|t V ((h=aV c = true) A (member(a,t,c))))))

Solution: 1.

e)

Consider the following producer-consumer situation:

fun {Buffer In N}
End=thread {List.drop In N} end
fun lazy {Loop In End}
case In of I|In2 then
I|{Loop In2 thread End.2 end}
end
end
in
{Loop In End}
end

fun lazy {Produce N} N|{Produce N+1} end

Page 3 of 25

proc {Consume Xs}
case Xs of _|Xr then {Delay 10} {Consume Xr} end
end

local Xs Ys in
thread Xs = {Produce 0} end
thread Ys = {Buffer Xs 3} end
{Consume Ys}

end

Which of the following statements are true about this situation?

1. The producer will produce too many elements, filling up the memory.
2. The producer and consumer will execute in lockstep.
3. The execution will suspend indefinately.

4. Neither 1., 2. or 3. are true.

Solution: 4. Neither

f)

Consider the following producer-consumer situation. (This is the same as the situation in the
previous subproblem, except that the lazy keywords have been removed.):

fun {Buffer In N}
End=thread {List.drop In N} end
fun {Loop In End}
case In of I|In2 then
I|{Loop In2 thread End.2 end}
end
end
in
{Loop In End}
end

fun {Produce N} N|{Produce N+1} end

proc {Consume Xs}
case Xs of _|Xr then {Delay 10} {Consume Xr} end
end

local Xs Ys in
thread Xs = {Produce 0} end
thread Ys = {Buffer Xs 3} end
{Consume Ys}

end

Which of the following statements are true about this situation?

Page 4 of 25

1. The producer will produce too many elements, filling up the memory.
2. The producer and consumer will execute in lockstep.
3. The execution will suspend indefinately.

4. Neither 1., 2. or 3. are true.

Solution: 1. ...produce too many

g)

Consider the following inheritance situation.

class Parentl class Childl from Parentl Parent2
meth ml skip end meth ml skip end
meth m2 skip end meth m2 skip end

end end

class Parent2 class Child2 from Parentl Parent3
meth ml skip end meth ml skip end
meth m3 skip end meth m3 skip end

end end

class Parent3 class Child3 from Parent2 Parent3
meth m2 skip end meth m2 skip end
meth m3 skip end meth m3 skip end

end end

How many of the subclasses Child1, Child2 and Child3 exhibit illegal inheritance?

1. 0 2.1 3.2 4. 3

Solution: 2. 1.

h)

Consider the following two functions. They are supposed to check for conflicts in the inheritance
situation with the child class Child and the list of parent classes Parents, returning true if there
are any conflicts and false otherwise. (The functions expect classes in the same form as in the
object system in chapter 7 and exercise 8, but without wrappings.)

fun {Conflictsl Child Parents}

ConfMeth = {Set.minus
{FoldL
Parents
fun {$ U X} {Set.inter U {Arity X.methods}} end
nil}
{Arity Child.methods}}

ConfAttr = {Set.minus
{FoldL

Page 5 of 25

Parents
fun {$ U X} {Set.inter U X.attrs} end
nil}
Child.attrs} in
ConfMeth\=nil orelse ConfAttr\=nil
end

fun {Conflicts2 Child Parents}
case Parents
of nil then false
[] HIT then {FoldL
T
fun {$ U X}
ConfAttr={Set.minus
{Set.inter H.attrs X.attrs}
Child.attrs}
ConfMeth={Set.minus
{Set.inter {Arity H.methods} {Arity X.methods}}
{Arity Child.methods}} in
ConfAttr\=nil orelse ConfMeth\=nil orelse U
end
false} orelse
{Conflicts2 Child T}
end
end

Which of the functions are correct?

1. Conflictsl but not Conflicts2.
2. Conflicts2 but not Conflictsi.
3. Both.

4. Neither.

Solution: 2. Conflicts2 but not Conflictsl.
i)
If the class B is a subclass of the class A and the substitution property is satisfied, which of the
following statements must be true?.
1. For each method in B, A has a method with the same label.
2. For each method in B, A does not have a method with the same label.

3. For each method in B, if A has a method with the same label, the method in B performs
exactly the same operations on the object state as the method in A.

4. For each method in B, if A has a method with the same label, the method in B satisfies any
invariant assertions specified for the method in A.

Page 6 of 25

Solution: 4. ...invariant assertions

j)

The following are statements about the object systems of Java and 0z. Which statement is correct?

1. 0z uses dynamic binding by default. Java uses static binding by default.
2. 0z uses delegation by default. Java uses forwarding by default.
3. 0z uses the type view of inheritance by default. Java uses the structure view by default.

4. Neither 1., 2. or 3. are correct.

Solution: 4. Neither

Page 7 of 25

Functional programming

Problem 2: (15 %)

a)

You are familiar with the function Map as defined in the textbook. {Map Xs F} returns a new list
calculated from the list Xs by applying the function F to each of its elements.

Write a function TreeMap that performs an analogous calculation for binary trees conforming to the
following grammar:

<Tree> ::= leaf | tree(val:<Value> left:<Tree> right:<Tree>)

Here, <Value> means any value in Oz.

Here is an example of this kind of tree:

Tl = tree(val:false
left:tree(val:true
left:leaf
right:leaf)
right:tree(val:true
left:leaf
right:leaf))

{TreeMap T F} should return a new tree calculated from the tree T by applying the function F to
the val field of each node in T.

For example, {TreeMap T1 fun {$ X} X==false end} should return the following tree:

tree(val:true
left:tree(val:false
left:leaf
right:leaf)
right:tree(val:false
left:1leaf
right:leaf))

Solution:

fun {TreeMap T F}
case T
of leaf then leaf
[] tree(val:V left:L right:R) then
tree(val:{F V} left:{TreeMap L F} right:{TreeMap R F})

end
end
b)
Will your solution for a) execute with constant stack size? Give a convincing argument for your
answer.
Solution: Our solution for a) will not execute with constant stack size, since there are two

recursive calls, and when the first recursive call is executing, the second call will remain on the
stack.

Page 8 of 25

Relational programming

Problem 3: (20 %)

Write a function {Palindrome Len Alphabet} that returns a list containing all palindromes of
length Len over the alphabet Alphabet. A palindrome is a sequence that is identical to itself when
reversed. Use the relational computation model.

For example, the function call {Palindrome 3 [a b c]} should return the following list of palin-
dromes. (The order of the list is not important.)

[[a aal] [abal] [ac a]
[babl] [bbb]l [bc b]
[cac]l [cbc] [cccll

Solution:

fun {Letter Alphabet}
case Alphabet
of nil then fail
[] HIT then
choice H [] {Letter T} end
end
end

fun {Palindrome Len Alphabet}
fun {PalindromeRel Len Alphabet}
if Len==0 then nil
elseif Len==1 then [{Letter Alphabet}]
elseif Len>1 then L={Letter Alphabet} in
L|{Append {PalindromeRel Len-2 Alphabet} [L]}
else fail
end
end in
{SolveAll fun {$} {PalindromeRel Len Alphabetl} end}
end

Grammars and parsing

Problem 4: (10 %)

Consider the following grammar for arithmetic expressions with postfix operators. (A postfix oper-
ator is an operator that is written after the operands.)

<Expr> ::
<0p>

<Expr> <Expr> <0p> | (Int)
140 | ’_ | I %) | 7/7

(Int) is a terminal symbol that stands for any integer. The tokenizer gives (Int) tokens as
0z records with the label int and with an Oz integer as its only content. For example, the

Page 9 of 25

expression 1 1 + 2 2 + *x will be processed by the tokenizer into the following token sequence:
[int (1) int(1) ’+’ int(2) int(2) ’+° 2%°].

a)
Is the grammar ambiguous? Give a convincing argument for your answer.

Solution: The grammar is not ambiguous. An expression is either an integer or an expression
consisting of two subexpressions and an operator. In the first case, it is obvious that there is only one
derivation tree. In the second case, the operator is the rightmost symbol in the expression, and it is
obvious that it has only one derivation tree. To the right of the operator comes the two expressions,
and we can know unambigously where the first one ends and the second begins by counting the
number of operators and integers, since an expression must have one more integers than operators.
(The derivation for an expression contains n applications of the operator-introducing rule, where
n is zero or greater. Each application increases both the number of operators and the number of
<Expr>-symbols by one. Each <Expr> can only disappear by changing it into an integer. Since
the derivation starts with an <Expr>-symbol, the number of integers must be one greater than the
number of operators.) If we assume that the two expressions each only have one derivation tree,
then the combined expression will only have one derivation tree also, since there is only one way to
combine the subexpressions. So we have proved by induction that the grammar is not ambiguous.
FIXME: clear this up.

b)
What is the significance of the concepts precedence and associativity for this grammar?

Solution: The concepts precedence and associativity have no significance for this grammar,
since with postfix operators there is no ambiguity as to the order that the operations should be
evaluated in.

c)

Does the grammar have any properties that make it unsuitable for parsing with left-right recursive
descent? If so, give an example of such a property. If not, give an example of a property that the
grammar doesn’t have but that would have made the grammar unsuitable. For the property you
gave as the example, explain why it makes grammars unsuitable for parsing by left-right recursive
descent.

Solution: The grammar has left-recursion in the rule for <Expr>. This makes it unsuitable for
parsing with left-right recursive descent, since when the parser tries to parse an instance of the non-
terminal with the left-recursive rule, it will first try to parse an instance of the same non-terminal,
and so on in unending recursion.

Page 10 of 25

Declarativity and computation models

Problem 5: (10 %)

In this task, we will consider the consequences of adding the statement IsDet to various computation
models. IsDet has the following syntax:

<s> ::= {IsDet <x> <y>}

The semantic rule for IsDet is as follows:

The semantic statement is ({IsDet <x> <y>}, E)
Execution consists of the following actions:

If E((z)) is determined (i.e. bound to a value), bind E((y)) to true. otherwise, bind E({y)) to
false.

For each of the following computation models, state what would be the consequence for the declar-
ativeness of the model if the model was extended with the IsDet statement. (None of the models
have exceptions.) Give convincing arguments for your answers.

a)
The declarative, sequential computation model from chapter 2.

Solution: Adding the IsDet statement to the declarative, sequential computation model from
chapter 2 will have no effect on the declarativeness of the model. Since the model is sequential,
the statements in a program will always be executed in the same order. Consider a sequence of
statements, some of which are IsDet statements. Since the model without IsDet is declarative,
all executions with the same initial binding of the variables will result in the same binding of the
variables right before the first IsDet statement. Therefore, the result of IsDet will be the same in
each of these executions. By the same reasoning, the results of the remaining IsDet statements will
also be the same. Therefore, the resulting model is declarative.

b)
The data-driven concurrent computation model from chapter 4.1.

Solution: The data-driven concurrent model is declarative. If we add the IsDet statement, we
can write the following program:

local X in
thread if {IsDet X} then skip else X=true end end
thread if {IsDet X} then skip else X=false end end
end

This program will give a different binding of X depending on the scheduling of the threads. There-

fore, we can see that adding IsDet has had the consequence of making the model lose its declara-
tiveness.

c)

Page 11 of 25

The demand-driven concurrent computation model from chapter 4.5.

Solution: The demand-driven concurrent model is declarative and is also a superset of the
data-driven concurrent model, so the result will be the same as for b).

d)
The stateful, sequential computation model from chapter 6.

Solution: The stateful, sequential model is not declarative, and adding IsDet will not change
that, since we can still write the same non-declarative programs as before.

Page 12 of 25

Extending P

Problem 6: (25%)

Remember the toy language P that we wrote grammars, a parser and an interpreter for in the
project.

We want to extend P with lists. A list is a composite value that contains a sequence of zero or
more values. A list expression can be written with the keyword list, followed by an opening
paranthesis, followed by a comma-separated sequence of zero or more expressions, followed by a
closing paranthesis. A list expression can stand alone as a program. The value of a list expression
is the list of the values of the expression the list expression consists of. The list 1ist(2, 4, 6) is
the value of the following list expression.

list(1+1, 2+2, 3+3)

We also need to add some operations for working with lists. The operation head gives the first
element of a list. A head expression is written with the keyword head, followed by an opening
parenthesis, followed by an expression, followed by a closing parenthesis. head gives a runtime
failure if the value of the expression between the parentheses is an empty list or not a list. The
following expression has the number 1 as its value:

head (1ist(1, 2, 3))

The operation tail gives the result of removing the first element from a list. A tail expression
is written with the keyword tail, followed by an opening parenthesis, followed by an expression,
followed by a closing parenthesis. tail gives a runtime failure if the value of the expression between
the parantheses is an empty list or not a list. The following expression has as its value the list
list(2, 3).

tail (list(1, 2, 3))

The operation cons gives the result of constructing a list from two expressions, with the value of the
first becoming the head and the value of the second becoming the tail. A cons expression is written
with the keyword cons, followed by an opening parenthesis, followed by an expression, followed by a
comma, followed by an expression, followed by a closing parenthesis. cons gives a runtime failure if
the value of the second expression is not a list. The following expression has as its value the nested
list 1ist(1ist (1, 2) 3, 4).

cons(list(1, 2) 1list(3, 4))
Here is an example program that finds the length of a list. The program returns the number 3.

functions
length(xs)
if xs==1ist() then O
else 1+call length(tail(xs))
end
end
in
call length(list(1,2,3))
end

Page 13 of 25

Here is an example program that appends two lists. The program returns the list
list(1, 2, 3, 4, 5, 6).

functions
append(xs, ys)
if xs==1ist() then ys
else cons(head(xs), call append(tail(xs), ys))
end
end
in
call append(list(1,2,3), 1list(4,5,6))
end

In the subproblems a)-c), you will modify the grammars, parser and interpreter to make it able to
handle lists, list expressions and the list operations head, tail and cons. In the appendix you will
find the suggested solution from the project. Give references to the line numbers where you will
make a modification or an addition. Make reasonable assumptions where necessary.

a)
Write the modifications and additions you will make to the grammars for the concrete and abstract
syntax.

Solution: Concrete syntax:
e Add the following after line 10:
| <List> | <Head> | <Tail> | <Cons>

e Add the following after line 25 (line numbers before the above addition):

<List> ::= list ’(’ <ListElements> ’)°

<ListElements> ::= epsilon | <Expr> | <Expr> ’,’ <ListElements>
<Head> ::= head ’(’ <Expr> ’)’

<Tail> 1:= tail *(° <Expr> ’)’

<Cons> ::= cons ’(’ <Expr> <Expr> ’)’

Abstract syntax:

e Add the following after line 36 (line numbers before the above additions):

<List>
<Head>
<Tail>
<Cons>

e Add the following after line 50 (line numbers before the above additions):

<List> = nil | <Expr> ’|’ <List>
<Head> = head (<Expr>)

<Tail> = tail (<Expr>)

<Cons> = cons(<Expr> <Expr>)

Page 14 of 25

b)
Write the modifications and additions you will make to the parser.

Solution:
e Add the following after line 44:

[1ist then S3 in
S2 = ’(’|83
case 353
of ’)?|S4 then Sn=S54 nil
else{SegAsList Expr Comma S3 ’)’|Sn}

end
[] head then S3 in
S2 = 2(’]83

head ({Expr S3 ’)’|Sn})
[] tail then S3 in
S2 = 7(’|S3
tail ({Expr S3 ’)’|Sn})
[] cons then S3 S4 in
S2 = 7(’|S3
cons ({Expr S3 ’,’|S4} {Expr S4 ’)’|Sn})

c)
Write the modifications you will make to the interpreter. When a program has a list as its value,
the interpreter should return that value as an 0z list.

Solution:
e Add the following after line 60:

[] head(E) then H|_={Eval E Env} in H
[tail(E) then _|T={Eval E Env} in T
[1 cons(E1l E2) then {Eval E1 Env}|{Eval E2 Env}

e Change lines 61-63 (line numbers before the above addition) to:

else if {IsInt AST} orelse {IsBool AST} orelse {IsList AST} then AST
elseif {IsAtom AST} then {Lookup AST Env}
end

d)

We now want to add static typechecking to P. Explain as concretely as possible what changes we
can make to the grammars, the parser, the interpreter and to the system as a whole in order to
accomplish this. Write no more than one page.

Solution: (The language will have four types: numbers, booleans, lists and functions. In
addition there can be different types of lists and functions depending on the type of the contents
of a list and the type on the parameters and return value of a function.) We need to extend the
concrete syntax to include specifications of the type of each identifier introduced in a let expression

Page 15 of 25

or as a formal argument to a function. We also need to extend the concrete syntax to include
specifications for the return values of functions and the type of the contents of a list. The abstract
syntax must be extended to hold these type specification in the nodes for let expressions, function
declarations and list expressions. The parser must be extended to parse the new concrete syntax
and build the new abstract syntax trees.

The type checking itself will happen in a new function that takes an AST as input and returns
the type of the AST. If the AST is misstyped, the function raises an exception. For a node in the
AST, the function finds the types of the children and from them calculates the type of the node.
At the bottom of the tree we find number and boolean literals, whose types can be found without
recursion.

The interpreter only needs to be changed to ignore the type information in the AST.

Page 16 of 25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Appendix

Concrete and abstract syntax for P

Concrete syntax (epsilon means nothing)

<Expr>

<ExprP2>
<ExprP3>
<ExprP4>

<LetExpr>
<LetItems>
<LetItem>
<Functions>
<FunDefs>
<FunDef>
<FormalParamList>
<FormalParams>
<IfExpr>

<FunApp>
<ActualParamlList>
<ActualParams>
<COP>

<EQOP>

<TOP>

Abstract syntax

<Expr>

<LetExpr>
<LetItems>
<LetItem>
<Functions>
<FunDefs>
<FunDef>
<FormalParams>
<IfExpr>
<FunApp>
<ActualParams>

::= <ExprP2> | <Expr> <COP> <ExprP2>

<ExprP3> | <ExprP2> <EOP> <ExprP3>
<ExprP4> | <ExprP3> <TOP> <ExprP4>

::= <LetExpr>

| <Functions>

| <IfExpr>

| <FunApp>

| (Ident) | (Num) | (Bool) | ’(’ <Expr> ’)’
::= let <LetItems> in <Expr> end

= <LetItem> | <LetItem> ’,’ <LetItems>

= (Ident) ’=’ <Expr>

::= functions <FunDefs> in <Expr> end
::= <FunDef> |
::= (Ident) ’(’ <FormalParamlList> ’)’ <Expr> end
::= epsilon | <FormalParams>

::= (Ident) |
::= if <Expr> then <Expr> else <Expr> end
::= call (Ident)
::= epsilon | <ActualParams>

::= <Expr> | <Expr> ’,’ <ActualParams>

<FunDef> ?,? <FunDefs>

(Ident) ’,’ <FormalParams>

’(? <ActualParamlList

’)’

= d==2 | =2 | > |) | =< | >=?

Ti= 04 |

c= %) |

7/7

op(<0OP> <Expr> <Expr>)

<LetExpr>

<Functions>

<IfExpr>

<FunApp>

<Ident>

<Number>

<Bool>

letexpr(<LetItems> <Expr>)

<LetItem> ’|’ nil | <LetItem> ’|’ <LetItems>

= letitem(<Ident> <Expr>)

functions(<FunDefs> <Expr>)

<FunDef> ’|? nil | <FunDef> ’|’ <FunDefs>
fundef (<Ident> <FormalParams> <Expr>)
nil | <Ident> ’|’ <FormalParams>

ifexpr(<Expr> <Expr> <Expr>)

funapp(<Ident> <ActualParams>)

nil | <Expr> ’|’ <ActualParams>

Page 17 of 25

47

48

49

50

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

<0P> = d==) | 1= | 150 | 10 | 1= | I>=7
<Ident> ::= <0OzAtom>
<Num> ::= <0zInt>
<Bool> ::= <0zBool>

Parser for P

h
h
h
h
h
h
h
b
h

Grammar transformation.

To enable parsing with left-right recursive descent, the first three
lines of the grammar have been changed to the following.

operators are still parsed left-assosiatively.)

<Expr> =
<ExprP2> S
<ExprP3> =

functor

export parse:Parse

define

fun {Expr S1 Sn}
{0pSeq ExprP2 COP
end

fun {ExprP2 S1 Sn}
{0pSeq ExprP3 EOP
end

fun {ExprP3 S1 Sn}
{0pSeq ExprP4 TOP
end

fun {ExprP4 S1 Sn}
T|S2=S1 in
case T

<ExprP2> | <ExprP2> <COP> <Expr>

<ExprP3> | <ExprP3> <EOP> <ExprP2>
<ExprP4> | <ExprP4> <TOP> <ExprP3>

S1 Sn}

S1 Sn}

S1 Sn}

of let then {LetExpr S1 Sn}

[] functions then

{Functions S1 Sn}

[1 ’if’> then {IfExpr S1 Sn}
[] call then {FunApp S1 Sn}

(1 °C’ then E S3 in
E = {Expr S2 S3}

S3=’)7|Sn
E

[] ident(X) then Sn=S2 X

[num(X) then Sn=

52 X

[1J bool(X) then Sn=S2 case X

of ’true’ then true
[1 ’false’ then false

Page 18 of 25

(The

)%

J/J

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

end
end
end

fun {LetExpr S1 Sn}
S2 S3 X1 X2 in

S1 = let|S2
X1 = {SeqgAsList LetItem Comma S2 ’in’|S3}
X2 = {Expr S3 ’end’|Sn}

letexpr (X1 X2)
end

fun {Functions S1 Sn}
S2 S3 X1 X2 in

S1 = functions|S2
X1 = {SeqAsList FunDef Comma S2 ’in’|S3}
X2 = {Expr S3 ’end’|Sn}

functions (X1 X2)
end

fun {LetItem S1 Sn}

S2 S3 I E in
S1 = ident(I)[S2
§2 = ’=7|S3

E = {Expr S3 Sn}
letitem(I E)
end

fun {FunDef S1 Sn}
I FParams Body S2 S3 S4 in
ident (I)[S2=S1
S2=2(’]83

FParams = {FormalParamList S3 ?)’|S4}

Body = {Expr S4 ’end’|Sn}
fundef (I FParams Body)
end

fun {FormalParamList S1 Sn}
case S1
of [’)’] then S1=Sn nil
[1 °)’|_ then S1=Sn nil
else {SegAsList
fun {$ S1 Sn}

case S1 of ident(I)|S2 then Sn=S2 I end

end
Comma S1 Sn}
end
end

fun {IfExpr S1 Sn}

Page 19 of 25

94

95

96

97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

138

139

140

141

142

143

end

fun

end

fun

end

X1 X2 X3 S2 833 S4 in

S1 = 2if’|S2

X1 = {Expr S2 ’then’|S3}
X2 = {Expr S3 ’else’|S4}
X3 = {Expr S4 ’end’|Sn}

ifexpr (X1 X2 X3)

{FunApp S1 Sn}

I AParams S2 S3 in
S1 = calllS2

S2 = ident(I)|’(’[8S3

AParams = {ActualParamList S3 ’)’|Sn}

funapp (I AParams)

{ActualParamList S1 Sn}
case S1

of [?)’] then S1=Sn nil
[1 ?)’|_ then S1=Sn nil

else {SeqAsList Expr Comma S1 Sn}

end

fun {SegAsList NonTerm Sep S1 Sn}

end

fun

in

end

X1 S2 in

X1 = {NonTerm S1 S2}
case S2

of nil then S2=Sn [X1]

[TIS3 then if {Sep T} then X1|{SegAsList NonTerm Sep S3 Sn}

else S2=Sn [X1]
end
end

{0pSeq NonTerm Sep S1 Sn}
fun {Loop Prefix S2 Sn}

case S2 of T|S3 andthen {Sep T} then Next S4 in

Next={NonTerm S3 S4}

{Loop op(T Prefix Next) S4 Sn}

else
Sn=S2 Prefix
end
end
First S2

First={NonTerm S1 S2}
{Loop First S2 Sn}

Page 20 of 25

144

145

146

147

148

149

150

151

152

153

154

155

156

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

fun {Comma X} X==’,’ end

fun {COP Y}
Y==’<’ orelse Y==’>’ orelse Y==’=<’ orelse
Y==7>=? orelse Y==’==’ orelse Y==’!=’

end

fun {EOP Y} Y==’+4’ orelse Y==’-’ end

fun {TOP Y} Y=="%’ orelse Y=="/’ end

fun {Parse Tokens}
{Expr Tokens nil}
end

end

Interpreter for P

functor
export Interpret
define

fun {Interpret AST}
{Eval AST nil}
end

fun {Eval AST Env}
case AST
of op(Op E1 E2) then V1 V2 in
Vi = {Eval E1 Env}
V2 = {Eval E2 Env}
case Op
of ==’ then V1==V2
[] ’!'=’ then V1\=V2
[1 >>’ then V1>V2
[] ’<’ then Vi<V2
[1 =<’ then V1=<V2
[1 >>=? then V1>=V2
[1 °+° then V1+V2
[J °-’ then V1-V2
[1 °*° then V1*V2
[°/’ then V1 div V2
end
[1 letexpr(LetItems E) then NewEnv in
NewEnv = {FoldL
LetItems
fun {$ U X} I E in
X = letitem(I E)
{Bind I {Eval E Env} U}
end
Env}
{Eval E NewEnv}

Page 21 of 25

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

[1 functions(FunDefs E) then CEnv in

(]

(]

CEnv = {FoldL FunDefs

fun {$ U X} I FParams Body in

X = fundef (I

{Bind I funval(FParams Body CEnv) U}

end Env}
{Eval E CEnv}

ifexpr(E1 E2 E3) then case {Eval E1 Env}
of true then {Eval E2 Env}
[] false then {Eval E3 Env}

end
funapp(I ActualParamlList)
funval (FParams Body CEnv)

end
end in

{MakePairs FParams ActualParamList}

end

FParams Body)

then FParams Body CEnv ParamPairs in
= {Lookup I Env}
ParamPairs = local fun {MakePairs L1 L2}
case L1#L2 of nil#nil then nil
(] (H1|T1)#(H2|T2) then (H1#H2)|{MakePairs T1 T2}

{Eval Body {FoldL ParamPairs

fun {$ U X}

Formal Actual in
Formal#Actual = X

{Bind Formal {Eval Actual Env} U}

end CEnv}}

else if {IsAtom AST} then {Lookup AST Env}

end
end

fun {B
cas

elseif {IsInt AST} orelse {IsBool AST} then AST

end

ind Ident Value Env}
e Env

of nil then [bind(Ident Value)]

(]

end
end

fun {L
cas

of nil then raise lookupFailure(Ident Env) end

(]

end

bind(I V) |Rest then

if Ident==I then bind(Ident Value) |Rest

else bind(I V) |{Bind Ident Value Rest}

end

ookup Ident Env}
e Env

bind(I V) |Rest then

if Ident==I then V

else {Lookup Ident Rest}
end

Page 22 of 25

85

86

87

10

11

end

end

Example programs in P
Simple.p

let X = 1 in X end

Max.p

functions
max(x, y)
if x>y then x else y end
end
in
call max(3, 4)
end

Fact.p

functions
fact(n)
if n==0 then 1
else n*call fact(n-1)
end
end
in
call fact(3)
end

Fib.p

functions
fib(x)
if x==0 then 0 else
if x==1 then 1 else
call fib(x-1) + call fib(x-2)
end
end
end
in
call fib(12)
end

Page 23 of 25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Fibacc.p

functions
fib(x)
functions
fibacc(x, n, meml, mem2)
let
fn = if n==0 then O
else if n==1 then 1
else meml+mem2
end
end
in
if x==n then fn
else call fibacc(x, n+1,

fn, memi)
end
end
end
in
call fibacc(x, 0, 0, 0)
end
end
in
call fib(12)
end
Oddeven.p
functions
odd (x)
if x==0 then false else call even(x-1) end
end,
even(x)
if x==0 then true else call odd(x-1) end
end
in
call odd(3)
end

Page 24 of 25

Answer sheet for Problem 1, Multiple Choice.

Fill in your student number and answers to Problem 1 on this page.

Student number:

\ \\1.\2.\3.\4\

Remember to hand in this page along with the rest of your answers!

END OF EXAM

Page 25 of 25

