
Norwegian University of S
ien
e and Te
hnologyFa
ulty of Information Te
hnology, Mathemati
s and Ele
tri
al EngineeringDepartment of Computer and Information S
ien
eEXAM IN COURSE TDT 4165PROGRAMMING LANGUAGESWITH A SOLUTIONTuesday De
ember 6, 2005, 9.00�13.00ENGELSKConta
t during the exam:Ole Edsberg, Tlf 952 81 586Exam aid
ode: CNo written material is permitted.The o�
ially approved
al
ulator is allowed.The exam was
reated by Ole Edsberg. (date/signature)
The quality of the exam was approved by Per Holager. (date/signature)
Read all of the following before you start making your answers:

• Answer brie�y and
on
isely. Un
lear and unne
essarily long answers will re
eive lower grades.
• All programming problems must be solved with Oz.
• You may use the following fun
tions and pro
edures from the textbook, without de�ning them:Append, Drop, FoldL, FoldR, ForAll, Length, Map, Max, Min, Member, Reverse, Take, Solve,SolveAll.Multiple Choi
eFill in your answers on the answer sheet on the last page.Only one of the alternatives for ea
h subproblem is
orre
t.Page 1 of 25

Problem 1: (20 %)a)Consider the following fun
tions:fun {FoldR L F U}
ase Lof nil then U[℄ X|L1 then {F X {FoldR L1 F U}}endendfun {IterSum Xs}
ase Xsof nil then 0[℄ H|T then H+{IterSum T}endendWhi
h of the fun
tions will exe
ute with
onstant sta
k size?1. FoldR but not IterSum.2. IterSum but not FoldR.3. Both.4. Neither.Solution: 4. Neither.b)Whi
h of the following statements about purely fun
tional programming in the de
larative, sequen-tial
omputation model is the most
orre
t?1. Every program
omponent is either a fun
tion or a pro
edure.2. Thread syn
hronization is done with data�ow variables.3. Variables are never unbound.4. The exe
ution of fun
tion
alls is delayed until the result is needed.Solution: 3. Variables are never unbound.
)Whi
h programming language is more expressive, pure Prolog or the relational
omputation modelfrom
hapter 9 of the textbook?1. Pure Prolog. Page 2 of 25

2. The relational
omputation model.3. Neither.4. The question is not meaningful.Solution: 2. The relational
omputation model.d)Consider the following pro
edure in the relational
omputation model:pro
 {Member ?A B ?C}
ase Bof nil then C=false[℄ H|T then
hoi
e H=A C=true [℄ {Member A T C} endendendWhi
h of the following logi
al expressions is a
orre
t logi
al semanti
s for the pro
edure?1. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∧ c = false) ∨ (∃h, t.(b = h|t ∧ ((h = a ∧ c = true) ∨ (member(a, t, c))))))2. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∧ c = false) ∨ (∀h, t.(b = h|t ∧ ((h = a ∧ c = true) ∨ (member(a, t, c))))))3. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∨ c = false) ∧ (∃h, t.(b = h|t ∨ ((h = a ∨ c = true) ∧ (member(a, t, c))))))4. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∨ c = false) ∧ (∀h, t.(b = h|t ∨ ((h = a ∨ c = true) ∧ (member(a, t, c))))))Solution: 1.e)Consider the following produ
er-
onsumer situation:fun {Buffer In N}End=thread {List.drop In N} endfun lazy {Loop In End}
ase In of I|In2 thenI|{Loop In2 thread End.2 end}endendin {Loop In End}endfun lazy {Produ
e N} N|{Produ
e N+1} endPage 3 of 25

pro
 {Consume Xs}
ase Xs of _|Xr then {Delay 10} {Consume Xr} endendlo
al Xs Ys inthread Xs = {Produ
e 0} endthread Ys = {Buffer Xs 3} end{Consume Ys}endWhi
h of the following statements are true about this situation?1. The produ
er will produ
e too many elements, �lling up the memory.2. The produ
er and
onsumer will exe
ute in lo
kstep.3. The exe
ution will suspend inde�nately.4. Neither 1., 2. or 3. are true.Solution: 4. Neitherf)Consider the following produ
er-
onsumer situation. (This is the same as the situation in theprevious subproblem, ex
ept that the lazy keywords have been removed.):fun {Buffer In N}End=thread {List.drop In N} endfun {Loop In End}
ase In of I|In2 thenI|{Loop In2 thread End.2 end}endendin {Loop In End}endfun {Produ
e N} N|{Produ
e N+1} endpro
 {Consume Xs}
ase Xs of _|Xr then {Delay 10} {Consume Xr} endendlo
al Xs Ys inthread Xs = {Produ
e 0} endthread Ys = {Buffer Xs 3} end{Consume Ys}endWhi
h of the following statements are true about this situation?Page 4 of 25

1. The produ
er will produ
e too many elements, �lling up the memory.2. The produ
er and
onsumer will exe
ute in lo
kstep.3. The exe
ution will suspend inde�nately.4. Neither 1., 2. or 3. are true.Solution: 1. . . . produ
e too manyg)Consider the following inheritan
e situation.
lass Parent1meth m1 skip endmeth m2 skip endend
lass Parent2meth m1 skip endmeth m3 skip endend
lass Parent3meth m2 skip endmeth m3 skip endend

lass Child1 from Parent1 Parent2meth m1 skip endmeth m2 skip endend
lass Child2 from Parent1 Parent3meth m1 skip endmeth m3 skip endend
lass Child3 from Parent2 Parent3meth m2 skip endmeth m3 skip endendHow many of the sub
lasses Child1, Child2 and Child3 exhibit illegal inheritan
e?1. 0 2. 1 3. 2 4. 3Solution: 2. 1.h)Consider the following two fun
tions. They are supposed to
he
k for
on�i
ts in the inheritan
esituation with the
hild
lass Child and the list of parent
lasses Parents, returning true if thereare any
on�i
ts and false otherwise. (The fun
tions expe
t
lasses in the same form as in theobje
t system in
hapter 7 and exer
ise 8, but without wrappings.)fun {Confli
ts1 Child Parents}ConfMeth = {Set.minus{FoldLParentsfun {$ U X} {Set.inter U {Arity X.methods}} endnil}{Arity Child.methods}}ConfAttr = {Set.minus{FoldL Page 5 of 25

Parentsfun {$ U X} {Set.inter U X.attrs} endnil}Child.attrs} inConfMeth\=nil orelse ConfAttr\=nilendfun {Confli
ts2 Child Parents}
ase Parentsof nil then false[℄ H|T then {FoldLTfun {$ U X}ConfAttr={Set.minus{Set.inter H.attrs X.attrs}Child.attrs}ConfMeth={Set.minus{Set.inter {Arity H.methods} {Arity X.methods}}{Arity Child.methods}} inConfAttr\=nil orelse ConfMeth\=nil orelse Uendfalse} orelse{Confli
ts2 Child T}endendWhi
h of the fun
tions are
orre
t?1. Confli
ts1 but not Confli
ts2.2. Confli
ts2 but not Confli
ts1.3. Both.4. Neither.Solution: 2. Confli
ts2 but not Confli
ts1.i)If the
lass B is a sub
lass of the
lass A and the substitution property is satis�ed, whi
h of thefollowing statements must be true?.1. For ea
h method in B, A has a method with the same label.2. For ea
h method in B, A does not have a method with the same label.3. For ea
h method in B, if A has a method with the same label, the method in B performsexa
tly the same operations on the obje
t state as the method in A.4. For ea
h method in B, if A has a method with the same label, the method in B satis�es anyinvariant assertions spe
i�ed for the method in A.Page 6 of 25

Solution: 4. . . . invariant assertionsj)The following are statements about the obje
t systems of Java and Oz. Whi
h statement is
orre
t?1. Oz uses dynami
 binding by default. Java uses stati
 binding by default.2. Oz uses delegation by default. Java uses forwarding by default.3. Oz uses the type view of inheritan
e by default. Java uses the stru
ture view by default.4. Neither 1., 2. or 3. are
orre
t.Solution: 4. Neither

Page 7 of 25

Fun
tional programmingProblem 2: (15 %)a)You are familiar with the fun
tion Map as de�ned in the textbook. {Map Xs F} returns a new list
al
ulated from the list Xs by applying the fun
tion F to ea
h of its elements.Write a fun
tion TreeMap that performs an analogous
al
ulation for binary trees
onforming to thefollowing grammar:<Tree> ::= leaf | tree(val:<Value> left:<Tree> right:<Tree>)Here, <Value> means any value in Oz.Here is an example of this kind of tree:T1 = tree(val:falseleft:tree(val:trueleft:leafright:leaf)right:tree(val:trueleft:leafright:leaf)){TreeMap T F} should return a new tree
al
ulated from the tree T by applying the fun
tion F tothe val �eld of ea
h node in T.For example, {TreeMap T1 fun {$ X} X==false end} should return the following tree:tree(val:trueleft:tree(val:falseleft:leafright:leaf)right:tree(val:falseleft:leafright:leaf))Solution:fun {TreeMap T F}
ase Tof leaf then leaf[℄ tree(val:V left:L right:R) thentree(val:{F V} left:{TreeMap L F} right:{TreeMap R F})endendb)Will your solution for a) exe
ute with
onstant sta
k size? Give a
onvin
ing argument for youranswer.Solution: Our solution for a) will not exe
ute with
onstant sta
k size, sin
e there are twore
ursive
alls, and when the �rst re
ursive
all is exe
uting, the se
ond
all will remain on thesta
k. Page 8 of 25

Relational programmingProblem 3: (20 %)Write a fun
tion {Palindrome Len Alphabet} that returns a list
ontaining all palindromes oflength Len over the alphabet Alphabet. A palindrome is a sequen
e that is identi
al to itself whenreversed. Use the relational
omputation model.For example, the fun
tion
all {Palindrome 3 [a b
℄} should return the following list of palin-dromes. (The order of the list is not important.)[[a a a℄ [a b a℄ [a
 a℄[b a b℄ [b b b℄ [b
 b℄[
 a
℄ [
 b
℄ [

℄℄Solution:fun {Letter Alphabet}
ase Alphabetof nil then fail[℄ H|T then
hoi
e H [℄ {Letter T} endendendfun {Palindrome Len Alphabet}fun {PalindromeRel Len Alphabet}if Len==0 then nilelseif Len==1 then [{Letter Alphabet}℄elseif Len>1 then L={Letter Alphabet} inL|{Append {PalindromeRel Len-2 Alphabet} [L℄}else failendend in{SolveAll fun {$} {PalindromeRel Len Alphabet} end}endGrammars and parsingProblem 4: (10 %)Consider the following grammar for arithmeti
 expressions with post�x operators. (A post�x oper-ator is an operator that is written after the operands.)<Expr> ::= <Expr> <Expr> <Op> | (Int)<Op> ::= '+' | '-' | '*' | '/'(Int) is a terminal symbol that stands for any integer. The tokenizer gives (Int) tokens asOz re
ords with the label int and with an Oz integer as its only
ontent. For example, thePage 9 of 25

expression 1 1 + 2 2 + * will be pro
essed by the tokenizer into the following token sequen
e:[int(1) int(1) '+' int(2) int(2) '+' '*'℄.a)Is the grammar ambiguous? Give a
onvin
ing argument for your answer.Solution: The grammar is not ambiguous. An expression is either an integer or an expression
onsisting of two subexpressions and an operator. In the �rst
ase, it is obvious that there is only onederivation tree. In the se
ond
ase, the operator is the rightmost symbol in the expression, and it isobvious that it has only one derivation tree. To the right of the operator
omes the two expressions,and we
an know unambigously where the �rst one ends and the se
ond begins by
ounting thenumber of operators and integers, sin
e an expression must have one more integers than operators.(The derivation for an expression
ontains n appli
ations of the operator-introdu
ing rule, where
n is zero or greater. Ea
h appli
ation in
reases both the number of operators and the number of<Expr>-symbols by one. Ea
h <Expr>
an only disappear by
hanging it into an integer. Sin
ethe derivation starts with an <Expr>-symbol, the number of integers must be one greater than thenumber of operators.) If we assume that the two expressions ea
h only have one derivation tree,then the
ombined expression will only have one derivation tree also, sin
e there is only one way to
ombine the subexpressions. So we have proved by indu
tion that the grammar is not ambiguous.FIXME:
lear this up.b)What is the signi�
an
e of the
on
epts pre
eden
e and asso
iativity for this grammar?Solution: The
on
epts pre
eden
e and asso
iativity have no signi�
an
e for this grammar,sin
e with post�x operators there is no ambiguity as to the order that the operations should beevaluated in.
)Does the grammar have any properties that make it unsuitable for parsing with left-right re
ursivedes
ent? If so, give an example of su
h a property. If not, give an example of a property that thegrammar doesn't have but that would have made the grammar unsuitable. For the property yougave as the example, explain why it makes grammars unsuitable for parsing by left-right re
ursivedes
ent.Solution: The grammar has left-re
ursion in the rule for <Expr>. This makes it unsuitable forparsing with left-right re
ursive des
ent, sin
e when the parser tries to parse an instan
e of the non-terminal with the left-re
ursive rule, it will �rst try to parse an instan
e of the same non-terminal,and so on in unending re
ursion.

Page 10 of 25

De
larativity and
omputation modelsProblem 5: (10 %)In this task, we will
onsider the
onsequen
es of adding the statement IsDet to various
omputationmodels. IsDet has the following syntax:<s> ::= {IsDet <x> <y>}The semanti
 rule for IsDet is as follows:The semanti
 statement is ({IsDet <x> <y>}, E)Exe
ution
onsists of the following a
tions:If E(〈x〉) is determined (i.e. bound to a value), bind E(〈y〉) to true. otherwise, bind E(〈y〉) tofalse.For ea
h of the following
omputation models, state what would be the
onsequen
e for the de
lar-ativeness of the model if the model was extended with the IsDet statement. (None of the modelshave ex
eptions.) Give
onvin
ing arguments for your answers.a)The de
larative, sequential
omputation model from
hapter 2.Solution: Adding the IsDet statement to the de
larative, sequential
omputation model from
hapter 2 will have no e�e
t on the de
larativeness of the model. Sin
e the model is sequential,the statements in a program will always be exe
uted in the same order. Consider a sequen
e ofstatements, some of whi
h are IsDet statements. Sin
e the model without IsDet is de
larative,all exe
utions with the same initial binding of the variables will result in the same binding of thevariables right before the �rst IsDet statement. Therefore, the result of IsDet will be the same inea
h of these exe
utions. By the same reasoning, the results of the remaining IsDet statements willalso be the same. Therefore, the resulting model is de
larative.b)The data-driven
on
urrent
omputation model from
hapter 4.1.Solution: The data-driven
on
urrent model is de
larative. If we add the IsDet statement, we
an write the following program:lo
al X inthread if {IsDet X} then skip else X=true end endthread if {IsDet X} then skip else X=false end endendThis program will give a di�erent binding of X depending on the s
heduling of the threads. There-fore, we
an see that adding IsDet has had the
onsequen
e of making the model lose its de
lara-tiveness.
) Page 11 of 25

The demand-driven
on
urrent
omputation model from
hapter 4.5.Solution: The demand-driven
on
urrent model is de
larative and is also a superset of thedata-driven
on
urrent model, so the result will be the same as for b).d)The stateful, sequential
omputation model from
hapter 6.Solution: The stateful, sequential model is not de
larative, and adding IsDet will not
hangethat, sin
e we
an still write the same non-de
larative programs as before.

Page 12 of 25

Extending PProblem 6: (25%)Remember the toy language P that we wrote grammars, a parser and an interpreter for in theproje
t.We want to extend P with lists. A list is a
omposite value that
ontains a sequen
e of zero ormore values. A list expression
an be written with the keyword list, followed by an openingparanthesis, followed by a
omma-separated sequen
e of zero or more expressions, followed by a
losing paranthesis. A list expression
an stand alone as a program. The value of a list expressionis the list of the values of the expression the list expression
onsists of. The list list(2, 4, 6) isthe value of the following list expression.list(1+1, 2+2, 3+3)We also need to add some operations for working with lists. The operation head gives the �rstelement of a list. A head expression is written with the keyword head, followed by an openingparenthesis, followed by an expression, followed by a
losing parenthesis. head gives a runtimefailure if the value of the expression between the parentheses is an empty list or not a list. Thefollowing expression has the number 1 as its value:head(list(1, 2, 3))The operation tail gives the result of removing the �rst element from a list. A tail expressionis written with the keyword tail, followed by an opening parenthesis, followed by an expression,followed by a
losing parenthesis. tail gives a runtime failure if the value of the expression betweenthe parantheses is an empty list or not a list. The following expression has as its value the listlist(2, 3).tail(list(1, 2, 3))The operation
ons gives the result of
onstru
ting a list from two expressions, with the value of the�rst be
oming the head and the value of the se
ond be
oming the tail. A
ons expression is writtenwith the keyword
ons, followed by an opening parenthesis, followed by an expression, followed by a
omma, followed by an expression, followed by a
losing parenthesis.
ons gives a runtime failure ifthe value of the se
ond expression is not a list. The following expression has as its value the nestedlist list(list(1, 2) 3, 4).
ons(list(1, 2) list(3, 4))Here is an example program that �nds the length of a list. The program returns the number 3.fun
tionslength(xs)if xs==list() then 0else 1+
all length(tail(xs))endendin
all length(list(1,2,3))end Page 13 of 25

Here is an example program that appends two lists. The program returns the listlist(1, 2, 3, 4, 5, 6).fun
tionsappend(xs, ys)if xs==list() then yselse
ons(head(xs),
all append(tail(xs), ys))endendin
all append(list(1,2,3), list(4,5,6))endIn the subproblems a)-
), you will modify the grammars, parser and interpreter to make it able tohandle lists, list expressions and the list operations head, tail and
ons. In the appendix you will�nd the suggested solution from the proje
t. Give referen
es to the line numbers where you willmake a modi�
ation or an addition. Make reasonable assumptions where ne
essary.a)Write the modi�
ations and additions you will make to the grammars for the
on
rete and abstra
tsyntax.Solution: Con
rete syntax:
• Add the following after line 10:| <List> | <Head> | <Tail> | <Cons>
• Add the following after line 25 (line numbers before the above addition):<List> ::= list '(' <ListElements> ')'<ListElements> ::= epsilon | <Expr> | <Expr> ',' <ListElements><Head> ::= head '(' <Expr> ')'<Tail> ::= tail '(' <Expr> ')'<Cons> ::=
ons '(' <Expr> <Expr> ')'Abstra
t syntax:
• Add the following after line 36 (line numbers before the above additions):| <List>| <Head>| <Tail>| <Cons>
• Add the following after line 50 (line numbers before the above additions):<List> ::= nil | <Expr> '|' <List><Head> ::= head(<Expr>)<Tail> ::= tail(<Expr>)<Cons> ::=
ons(<Expr> <Expr>)Page 14 of 25

b)Write the modi�
ations and additions you will make to the parser.Solution:
• Add the following after line 44:[℄ list then S3 inS2 = '('|S3
ase S3of ')'|S4 then Sn=S4 nilelse{SeqAsList Expr Comma S3 ')'|Sn}end[℄ head then S3 inS2 = '('|S3head({Expr S3 ')'|Sn})[℄ tail then S3 inS2 = '('|S3tail({Expr S3 ')'|Sn})[℄
ons then S3 S4 inS2 = '('|S3
ons({Expr S3 ','|S4} {Expr S4 ')'|Sn})
)Write the modi�
ations you will make to the interpreter. When a program has a list as its value,the interpreter should return that value as an Oz list.Solution:
• Add the following after line 60:[℄ head(E) then H|_={Eval E Env} in H[℄ tail(E) then _|T={Eval E Env} in T[℄
ons(E1 E2) then {Eval E1 Env}|{Eval E2 Env}
• Change lines 61-63 (line numbers before the above addition) to:else if {IsInt AST} orelse {IsBool AST} orelse {IsList AST} then ASTelseif {IsAtom AST} then {Lookup AST Env}endd)We now want to add stati
 type
he
king to P. Explain as
on
retely as possible what
hanges we
an make to the grammars, the parser, the interpreter and to the system as a whole in order toa

omplish this. Write no more than one page.Solution: (The language will have four types: numbers, booleans, lists and fun
tions. Inaddition there
an be di�erent types of lists and fun
tions depending on the type of the
ontentsof a list and the type on the parameters and return value of a fun
tion.) We need to extend the
on
rete syntax to in
lude spe
i�
ations of the type of ea
h identi�er introdu
ed in a let expressionPage 15 of 25

or as a formal argument to a fun
tion. We also need to extend the
on
rete syntax to in
ludespe
i�
ations for the return values of fun
tions and the type of the
ontents of a list. The abstra
tsyntax must be extended to hold these type spe
i�
ation in the nodes for let expressions, fun
tionde
larations and list expressions. The parser must be extended to parse the new
on
rete syntaxand build the new abstra
t syntax trees.The type
he
king itself will happen in a new fun
tion that takes an AST as input and returnsthe type of the AST. If the AST is misstyped, the fun
tion raises an ex
eption. For a node in theAST, the fun
tion �nds the types of the
hildren and from them
al
ulates the type of the node.At the bottom of the tree we �nd number and boolean literals, whose types
an be found withoutre
ursion.The interpreter only needs to be
hanged to ignore the type information in the AST.

Page 16 of 25

AppendixCon
rete and abstra
t syntax for P1 Con
rete syntax (epsilon means nothing)23 <Expr> ::= <ExprP2> | <Expr> <COP> <ExprP2>4 <ExprP2> ::= <ExprP3> | <ExprP2> <EOP> <ExprP3>5 <ExprP3> ::= <ExprP4> | <ExprP3> <TOP> <ExprP4>6 <ExprP4> ::= <LetExpr>7 | <Fun
tions>8 | <IfExpr>9 | <FunApp>10 | (Ident) | (Num) | (Bool) | '(' <Expr> ')'11 <LetExpr> ::= let <LetItems> in <Expr> end12 <LetItems> ::= <LetItem> | <LetItem> ',' <LetItems>13 <LetItem> ::= (Ident) '=' <Expr>14 <Fun
tions> ::= fun
tions <FunDefs> in <Expr> end15 <FunDefs> ::= <FunDef> | <FunDef> ',' <FunDefs>16 <FunDef> ::= (Ident) '(' <FormalParamList> ')' <Expr> end17 <FormalParamList> ::= epsilon | <FormalParams>18 <FormalParams> ::= (Ident) | (Ident) ',' <FormalParams>19 <IfExpr> ::= if <Expr> then <Expr> else <Expr> end20 <FunApp> ::=
all (Ident) '(' <A
tualParamList ')'21 <A
tualParamList> ::= epsilon | <A
tualParams>22 <A
tualParams> ::= <Expr> | <Expr> ',' <A
tualParams>23 <COP> ::= '==' | '!=' | '>' | '<' | '=<' | '>='24 <EOP> ::= '+' | '-'25 <TOP> ::= '*' | '/'2627 Abstra
t syntax2829 <Expr> ::= op(<OP> <Expr> <Expr>)30 | <LetExpr>31 | <Fun
tions>32 | <IfExpr>33 | <FunApp>34 | <Ident>35 | <Number>36 | <Bool>37 <LetExpr> ::= letexpr(<LetItems> <Expr>)38 <LetItems> ::= <LetItem> '|' nil | <LetItem> '|' <LetItems>39 <LetItem> ::= letitem(<Ident> <Expr>)40 <Fun
tions> ::= fun
tions(<FunDefs> <Expr>)41 <FunDefs> ::= <FunDef> '|' nil | <FunDef> '|' <FunDefs>42 <FunDef> ::= fundef(<Ident> <FormalParams> <Expr>)43 <FormalParams> ::= nil | <Ident> '|' <FormalParams>44 <IfExpr> ::= ifexpr(<Expr> <Expr> <Expr>)45 <FunApp> ::= funapp(<Ident> <A
tualParams>)46 <A
tualParams> ::= nil | <Expr> '|' <A
tualParams>Page 17 of 25

47 <OP> ::= '==' | '!=' | '>' | '<' | '=<' | '>=' | '+' | '-' | '*' | '/'48 <Ident> ::= <OzAtom>49 <Num> ::= <OzInt>50 <Bool> ::= <OzBool>Parser for P1 % Grammar transformation.2 %3 % To enable parsing with left-right re
ursive des
ent, the first three4 % lines of the grammar have been
hanged to the following. (The5 % operators are still parsed left-assosiatively.)6 %7 % <Expr> ::= <ExprP2> | <ExprP2> <COP> <Expr>8 % <ExprP2> ::= <ExprP3> | <ExprP3> <EOP> <ExprP2>9 % <ExprP3> ::= <ExprP4> | <ExprP4> <TOP> <ExprP3>1011 fun
tor12 export parse:Parse13 define1415 fun {Expr S1 Sn}16 {OpSeq ExprP2 COP S1 Sn}17 end1819 fun {ExprP2 S1 Sn}20 {OpSeq ExprP3 EOP S1 Sn}21 end2223 fun {ExprP3 S1 Sn}24 {OpSeq ExprP4 TOP S1 Sn}25 end2627 fun {ExprP4 S1 Sn}28 T|S2=S1 in29
ase T30 of let then {LetExpr S1 Sn}31 [℄ fun
tions then {Fun
tions S1 Sn}32 [℄ 'if' then {IfExpr S1 Sn}33 [℄
all then {FunApp S1 Sn}3435 [℄ '(' then E S3 in36 E = {Expr S2 S3}37 S3=')'|Sn38 E39 [℄ ident(X) then Sn=S2 X40 [℄ num(X) then Sn=S2 X41 [℄ bool(X) then Sn=S2
ase X42 of 'true' then true43 [℄ 'false' then falsePage 18 of 25

44 end45 end46 end4748 fun {LetExpr S1 Sn}49 S2 S3 X1 X2 in50 S1 = let|S251 X1 = {SeqAsList LetItem Comma S2 'in'|S3}52 X2 = {Expr S3 'end'|Sn}53 letexpr(X1 X2)54 end5556 fun {Fun
tions S1 Sn}57 S2 S3 X1 X2 in58 S1 = fun
tions|S259 X1 = {SeqAsList FunDef Comma S2 'in'|S3}60 X2 = {Expr S3 'end'|Sn}61 fun
tions(X1 X2)62 end6364 fun {LetItem S1 Sn}65 S2 S3 I E in66 S1 = ident(I)|S267 S2 = '='|S368 E = {Expr S3 Sn}69 letitem(I E)70 end7172 fun {FunDef S1 Sn}73 I FParams Body S2 S3 S4 in74 ident(I)|S2=S175 S2='('|S376 FParams = {FormalParamList S3 ')'|S4}77 Body = {Expr S4 'end'|Sn}78 fundef(I FParams Body)79 end8081 fun {FormalParamList S1 Sn}82
ase S183 of [')'℄ then S1=Sn nil84 [℄ ')'|_ then S1=Sn nil85 else {SeqAsList86 fun {$ S1 Sn}87
ase S1 of ident(I)|S2 then Sn=S2 I end88 end89 Comma S1 Sn}90 end91 end9293 fun {IfExpr S1 Sn} Page 19 of 25

94 X1 X2 X3 S2 S3 S4 in95 S1 = 'if'|S296 X1 = {Expr S2 'then'|S3}97 X2 = {Expr S3 'else'|S4}98 X3 = {Expr S4 'end'|Sn}99 ifexpr(X1 X2 X3)100 end101102 fun {FunApp S1 Sn}103 I AParams S2 S3 in104 S1 =
all|S2105 S2 = ident(I)|'('|S3106 AParams = {A
tualParamList S3 ')'|Sn}107 funapp(I AParams)108 end109110 fun {A
tualParamList S1 Sn}111
ase S1112 of [')'℄ then S1=Sn nil113 [℄ ')'|_ then S1=Sn nil114 else {SeqAsList Expr Comma S1 Sn}115 end116 end117118 fun {SeqAsList NonTerm Sep S1 Sn}119 X1 S2 in120 X1 = {NonTerm S1 S2}121
ase S2122 of nil then S2=Sn [X1℄123 [℄ T|S3 then if {Sep T} then X1|{SeqAsList NonTerm Sep S3 Sn}124 else S2=Sn [X1℄125 end126 end127 end128129 fun {OpSeq NonTerm Sep S1 Sn}130 fun {Loop Prefix S2 Sn}131
ase S2 of T|S3 andthen {Sep T} then Next S4 in132 Next={NonTerm S3 S4}133 {Loop op(T Prefix Next) S4 Sn}134 else135 Sn=S2 Prefix136 end137 end138 First S2139 in140 First={NonTerm S1 S2}141 {Loop First S2 Sn}142 end143 Page 20 of 25

144 fun {Comma X} X==',' end145 fun {COP Y}146 Y=='<' orelse Y=='>' orelse Y=='=<' orelse147 Y=='>=' orelse Y=='==' orelse Y=='!='148 end149 fun {EOP Y} Y=='+' orelse Y=='-' end150 fun {TOP Y} Y=='*' orelse Y=='/' end151152 fun {Parse Tokens}153 {Expr Tokens nil}154 end155156 endInterpreter for P1 fun
tor2 export Interpret3 define45 fun {Interpret AST}6 {Eval AST nil}7 end89 fun {Eval AST Env}10
ase AST11 of op(Op E1 E2) then V1 V2 in12 V1 = {Eval E1 Env}13 V2 = {Eval E2 Env}14
ase Op15 of '==' then V1==V216 [℄ '!=' then V1\=V217 [℄ '>' then V1>V218 [℄ '<' then V1<V219 [℄ '=<' then V1=<V220 [℄ '>=' then V1>=V221 [℄ '+' then V1+V222 [℄ '-' then V1-V223 [℄ '*' then V1*V224 [℄ '/' then V1 div V225 end26 [℄ letexpr(LetItems E) then NewEnv in27 NewEnv = {FoldL28 LetItems29 fun {$ U X} I E in30 X = letitem(I E)31 {Bind I {Eval E Env} U}32 end33 Env}34 {Eval E NewEnv} Page 21 of 25

35 [℄ fun
tions(FunDefs E) then CEnv in36 CEnv = {FoldL FunDefs37 fun {$ U X} I FParams Body in38 X = fundef(I FParams Body)39 {Bind I funval(FParams Body CEnv) U}40 end Env}41 {Eval E CEnv}42 [℄ ifexpr(E1 E2 E3) then
ase {Eval E1 Env}43 of true then {Eval E2 Env}44 [℄ false then {Eval E3 Env}45 end46 [℄ funapp(I A
tualParamList) then FParams Body CEnv ParamPairs in47 funval(FParams Body CEnv) = {Lookup I Env}48 ParamPairs = lo
al fun {MakePairs L1 L2}49
ase L1#L2 of nil#nil then nil50 [℄ (H1|T1)#(H2|T2) then (H1#H2)|{MakePairs T1 T2}51 end52 end in53 {MakePairs FParams A
tualParamList}54 end55 {Eval Body {FoldL ParamPairs56 fun {$ U X}57 Formal A
tual in58 Formal#A
tual = X59 {Bind Formal {Eval A
tual Env} U}60 end CEnv}}61 else if {IsAtom AST} then {Lookup AST Env}62 elseif {IsInt AST} orelse {IsBool AST} then AST63 end64 end65 end6667 fun {Bind Ident Value Env}68
ase Env69 of nil then [bind(Ident Value)℄70 [℄ bind(I V)|Rest then71 if Ident==I then bind(Ident Value)|Rest72 else bind(I V)|{Bind Ident Value Rest}73 end74 end75 end7677 fun {Lookup Ident Env}78
ase Env79 of nil then raise lookupFailure(Ident Env) end80 [℄ bind(I V)|Rest then81 if Ident==I then V82 else {Lookup Ident Rest}83 end84 end Page 22 of 25

85 end8687 endExample programs in PSimple.p1 let X = 1 in X endMax.p1 fun
tions2 max(x, y)3 if x>y then x else y end4 end5 in6
all max(3, 4)7 endFa
t.p1 fun
tions2 fa
t(n)3 if n==0 then 14 else n*
all fa
t(n-1)5 end6 end7 in8
all fa
t(3)9 endFib.p1 fun
tions2 fib(x)3 if x==0 then 0 else4 if x==1 then 1 else5
all fib(x-1) +
all fib(x-2)6 end7 end8 end9 in10
all fib(12)11 end
Page 23 of 25

Fiba

.p1 fun
tions2 fib(x)3 fun
tions4 fiba

(x, n, mem1, mem2)5 let6 fn = if n==0 then 07 else if n==1 then 18 else mem1+mem29 end10 end11 in12 if x==n then fn13 else
all fiba

(x, n+1,14 fn, mem1)15 end16 end17 end18 in19
all fiba

(x, 0, 0, 0)20 end21 end2223 in2425
all fib(12)2627 endOddeven.p1 fun
tions2 odd(x)3 if x==0 then false else
all even(x-1) end4 end,5 even(x)6 if x==0 then true else
all odd(x-1) end7 end8 in9
all odd(3)10 end
Page 24 of 25

Answer sheet for Problem 1, Multiple Choi
e.Fill in your student number and answers to Problem 1 on this page.
Student number: 1. 2. 3. 4a)b)
)d)e)f)g)h)i)j)
Remember to hand in this page along with the rest of your answers!

END OF EXAM

Page 25 of 25

