
Norwegian University of Siene and TehnologyFaulty of Information Tehnology, Mathematis and Eletrial EngineeringDepartment of Computer and Information SieneEXAM IN COURSE TDT 4165PROGRAMMING LANGUAGESWITH A SOLUTIONTuesday Deember 6, 2005, 9.00�13.00ENGELSKContat during the exam:Ole Edsberg, Tlf 952 81 586Exam aid ode: CNo written material is permitted.The o�ially approved alulator is allowed.The exam was reated by Ole Edsberg. (date/signature)
The quality of the exam was approved by Per Holager. (date/signature)
Read all of the following before you start making your answers:

• Answer brie�y and onisely. Unlear and unneessarily long answers will reeive lower grades.
• All programming problems must be solved with Oz.
• You may use the following funtions and proedures from the textbook, without de�ning them:Append, Drop, FoldL, FoldR, ForAll, Length, Map, Max, Min, Member, Reverse, Take, Solve,SolveAll.Multiple ChoieFill in your answers on the answer sheet on the last page.Only one of the alternatives for eah subproblem is orret.Page 1 of 25

Problem 1: (20 %)a)Consider the following funtions:fun {FoldR L F U}ase Lof nil then U[℄ X|L1 then {F X {FoldR L1 F U}}endendfun {IterSum Xs}ase Xsof nil then 0[℄ H|T then H+{IterSum T}endendWhih of the funtions will exeute with onstant stak size?1. FoldR but not IterSum.2. IterSum but not FoldR.3. Both.4. Neither.Solution: 4. Neither.b)Whih of the following statements about purely funtional programming in the delarative, sequen-tial omputation model is the most orret?1. Every program omponent is either a funtion or a proedure.2. Thread synhronization is done with data�ow variables.3. Variables are never unbound.4. The exeution of funtion alls is delayed until the result is needed.Solution: 3. Variables are never unbound.)Whih programming language is more expressive, pure Prolog or the relational omputation modelfrom hapter 9 of the textbook?1. Pure Prolog. Page 2 of 25

2. The relational omputation model.3. Neither.4. The question is not meaningful.Solution: 2. The relational omputation model.d)Consider the following proedure in the relational omputation model:pro {Member ?A B ?C}ase Bof nil then C=false[℄ H|T then hoie H=A C=true [℄ {Member A T C} endendendWhih of the following logial expressions is a orret logial semantis for the proedure?1. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∧ c = false) ∨ (∃h, t.(b = h|t ∧ ((h = a ∧ c = true) ∨ (member(a, t, c))))))2. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∧ c = false) ∨ (∀h, t.(b = h|t ∧ ((h = a ∧ c = true) ∨ (member(a, t, c))))))3. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∨ c = false) ∧ (∃h, t.(b = h|t ∨ ((h = a ∨ c = true) ∧ (member(a, t, c))))))4. ∀a, b, c.(member(a, b, c) ↔
(b = nil ∨ c = false) ∧ (∀h, t.(b = h|t ∨ ((h = a ∨ c = true) ∧ (member(a, t, c))))))Solution: 1.e)Consider the following produer-onsumer situation:fun {Buffer In N}End=thread {List.drop In N} endfun lazy {Loop In End}ase In of I|In2 thenI|{Loop In2 thread End.2 end}endendin {Loop In End}endfun lazy {Produe N} N|{Produe N+1} endPage 3 of 25

pro {Consume Xs}ase Xs of _|Xr then {Delay 10} {Consume Xr} endendloal Xs Ys inthread Xs = {Produe 0} endthread Ys = {Buffer Xs 3} end{Consume Ys}endWhih of the following statements are true about this situation?1. The produer will produe too many elements, �lling up the memory.2. The produer and onsumer will exeute in lokstep.3. The exeution will suspend inde�nately.4. Neither 1., 2. or 3. are true.Solution: 4. Neitherf)Consider the following produer-onsumer situation. (This is the same as the situation in theprevious subproblem, exept that the lazy keywords have been removed.):fun {Buffer In N}End=thread {List.drop In N} endfun {Loop In End}ase In of I|In2 thenI|{Loop In2 thread End.2 end}endendin {Loop In End}endfun {Produe N} N|{Produe N+1} endpro {Consume Xs}ase Xs of _|Xr then {Delay 10} {Consume Xr} endendloal Xs Ys inthread Xs = {Produe 0} endthread Ys = {Buffer Xs 3} end{Consume Ys}endWhih of the following statements are true about this situation?Page 4 of 25

1. The produer will produe too many elements, �lling up the memory.2. The produer and onsumer will exeute in lokstep.3. The exeution will suspend inde�nately.4. Neither 1., 2. or 3. are true.Solution: 1. . . . produe too manyg)Consider the following inheritane situation.lass Parent1meth m1 skip endmeth m2 skip endendlass Parent2meth m1 skip endmeth m3 skip endendlass Parent3meth m2 skip endmeth m3 skip endend

lass Child1 from Parent1 Parent2meth m1 skip endmeth m2 skip endendlass Child2 from Parent1 Parent3meth m1 skip endmeth m3 skip endendlass Child3 from Parent2 Parent3meth m2 skip endmeth m3 skip endendHow many of the sublasses Child1, Child2 and Child3 exhibit illegal inheritane?1. 0 2. 1 3. 2 4. 3Solution: 2. 1.h)Consider the following two funtions. They are supposed to hek for on�its in the inheritanesituation with the hild lass Child and the list of parent lasses Parents, returning true if thereare any on�its and false otherwise. (The funtions expet lasses in the same form as in theobjet system in hapter 7 and exerise 8, but without wrappings.)fun {Conflits1 Child Parents}ConfMeth = {Set.minus{FoldLParentsfun {$ U X} {Set.inter U {Arity X.methods}} endnil}{Arity Child.methods}}ConfAttr = {Set.minus{FoldL Page 5 of 25

Parentsfun {$ U X} {Set.inter U X.attrs} endnil}Child.attrs} inConfMeth\=nil orelse ConfAttr\=nilendfun {Conflits2 Child Parents}ase Parentsof nil then false[℄ H|T then {FoldLTfun {$ U X}ConfAttr={Set.minus{Set.inter H.attrs X.attrs}Child.attrs}ConfMeth={Set.minus{Set.inter {Arity H.methods} {Arity X.methods}}{Arity Child.methods}} inConfAttr\=nil orelse ConfMeth\=nil orelse Uendfalse} orelse{Conflits2 Child T}endendWhih of the funtions are orret?1. Conflits1 but not Conflits2.2. Conflits2 but not Conflits1.3. Both.4. Neither.Solution: 2. Conflits2 but not Conflits1.i)If the lass B is a sublass of the lass A and the substitution property is satis�ed, whih of thefollowing statements must be true?.1. For eah method in B, A has a method with the same label.2. For eah method in B, A does not have a method with the same label.3. For eah method in B, if A has a method with the same label, the method in B performsexatly the same operations on the objet state as the method in A.4. For eah method in B, if A has a method with the same label, the method in B satis�es anyinvariant assertions spei�ed for the method in A.Page 6 of 25

Solution: 4. . . . invariant assertionsj)The following are statements about the objet systems of Java and Oz. Whih statement is orret?1. Oz uses dynami binding by default. Java uses stati binding by default.2. Oz uses delegation by default. Java uses forwarding by default.3. Oz uses the type view of inheritane by default. Java uses the struture view by default.4. Neither 1., 2. or 3. are orret.Solution: 4. Neither

Page 7 of 25

Funtional programmingProblem 2: (15 %)a)You are familiar with the funtion Map as de�ned in the textbook. {Map Xs F} returns a new listalulated from the list Xs by applying the funtion F to eah of its elements.Write a funtion TreeMap that performs an analogous alulation for binary trees onforming to thefollowing grammar:<Tree> ::= leaf | tree(val:<Value> left:<Tree> right:<Tree>)Here, <Value> means any value in Oz.Here is an example of this kind of tree:T1 = tree(val:falseleft:tree(val:trueleft:leafright:leaf)right:tree(val:trueleft:leafright:leaf)){TreeMap T F} should return a new tree alulated from the tree T by applying the funtion F tothe val �eld of eah node in T.For example, {TreeMap T1 fun {$ X} X==false end} should return the following tree:tree(val:trueleft:tree(val:falseleft:leafright:leaf)right:tree(val:falseleft:leafright:leaf))Solution:fun {TreeMap T F}ase Tof leaf then leaf[℄ tree(val:V left:L right:R) thentree(val:{F V} left:{TreeMap L F} right:{TreeMap R F})endendb)Will your solution for a) exeute with onstant stak size? Give a onvining argument for youranswer.Solution: Our solution for a) will not exeute with onstant stak size, sine there are tworeursive alls, and when the �rst reursive all is exeuting, the seond all will remain on thestak. Page 8 of 25

Relational programmingProblem 3: (20 %)Write a funtion {Palindrome Len Alphabet} that returns a list ontaining all palindromes oflength Len over the alphabet Alphabet. A palindrome is a sequene that is idential to itself whenreversed. Use the relational omputation model.For example, the funtion all {Palindrome 3 [a b ℄} should return the following list of palin-dromes. (The order of the list is not important.)[[a a a℄ [a b a℄ [a a℄[b a b℄ [b b b℄ [b b℄[a ℄ [b ℄ [℄℄Solution:fun {Letter Alphabet}ase Alphabetof nil then fail[℄ H|T thenhoie H [℄ {Letter T} endendendfun {Palindrome Len Alphabet}fun {PalindromeRel Len Alphabet}if Len==0 then nilelseif Len==1 then [{Letter Alphabet}℄elseif Len>1 then L={Letter Alphabet} inL|{Append {PalindromeRel Len-2 Alphabet} [L℄}else failendend in{SolveAll fun {$} {PalindromeRel Len Alphabet} end}endGrammars and parsingProblem 4: (10 %)Consider the following grammar for arithmeti expressions with post�x operators. (A post�x oper-ator is an operator that is written after the operands.)<Expr> ::= <Expr> <Expr> <Op> | (Int)<Op> ::= '+' | '-' | '*' | '/'(Int) is a terminal symbol that stands for any integer. The tokenizer gives (Int) tokens asOz reords with the label int and with an Oz integer as its only ontent. For example, thePage 9 of 25

expression 1 1 + 2 2 + * will be proessed by the tokenizer into the following token sequene:[int(1) int(1) '+' int(2) int(2) '+' '*'℄.a)Is the grammar ambiguous? Give a onvining argument for your answer.Solution: The grammar is not ambiguous. An expression is either an integer or an expressiononsisting of two subexpressions and an operator. In the �rst ase, it is obvious that there is only onederivation tree. In the seond ase, the operator is the rightmost symbol in the expression, and it isobvious that it has only one derivation tree. To the right of the operator omes the two expressions,and we an know unambigously where the �rst one ends and the seond begins by ounting thenumber of operators and integers, sine an expression must have one more integers than operators.(The derivation for an expression ontains n appliations of the operator-introduing rule, where
n is zero or greater. Eah appliation inreases both the number of operators and the number of<Expr>-symbols by one. Eah <Expr> an only disappear by hanging it into an integer. Sinethe derivation starts with an <Expr>-symbol, the number of integers must be one greater than thenumber of operators.) If we assume that the two expressions eah only have one derivation tree,then the ombined expression will only have one derivation tree also, sine there is only one way toombine the subexpressions. So we have proved by indution that the grammar is not ambiguous.FIXME: lear this up.b)What is the signi�ane of the onepts preedene and assoiativity for this grammar?Solution: The onepts preedene and assoiativity have no signi�ane for this grammar,sine with post�x operators there is no ambiguity as to the order that the operations should beevaluated in.)Does the grammar have any properties that make it unsuitable for parsing with left-right reursivedesent? If so, give an example of suh a property. If not, give an example of a property that thegrammar doesn't have but that would have made the grammar unsuitable. For the property yougave as the example, explain why it makes grammars unsuitable for parsing by left-right reursivedesent.Solution: The grammar has left-reursion in the rule for <Expr>. This makes it unsuitable forparsing with left-right reursive desent, sine when the parser tries to parse an instane of the non-terminal with the left-reursive rule, it will �rst try to parse an instane of the same non-terminal,and so on in unending reursion.

Page 10 of 25

Delarativity and omputation modelsProblem 5: (10 %)In this task, we will onsider the onsequenes of adding the statement IsDet to various omputationmodels. IsDet has the following syntax:<s> ::= {IsDet <x> <y>}The semanti rule for IsDet is as follows:The semanti statement is ({IsDet <x> <y>}, E)Exeution onsists of the following ations:If E(〈x〉) is determined (i.e. bound to a value), bind E(〈y〉) to true. otherwise, bind E(〈y〉) tofalse.For eah of the following omputation models, state what would be the onsequene for the delar-ativeness of the model if the model was extended with the IsDet statement. (None of the modelshave exeptions.) Give onvining arguments for your answers.a)The delarative, sequential omputation model from hapter 2.Solution: Adding the IsDet statement to the delarative, sequential omputation model fromhapter 2 will have no e�et on the delarativeness of the model. Sine the model is sequential,the statements in a program will always be exeuted in the same order. Consider a sequene ofstatements, some of whih are IsDet statements. Sine the model without IsDet is delarative,all exeutions with the same initial binding of the variables will result in the same binding of thevariables right before the �rst IsDet statement. Therefore, the result of IsDet will be the same ineah of these exeutions. By the same reasoning, the results of the remaining IsDet statements willalso be the same. Therefore, the resulting model is delarative.b)The data-driven onurrent omputation model from hapter 4.1.Solution: The data-driven onurrent model is delarative. If we add the IsDet statement, wean write the following program:loal X inthread if {IsDet X} then skip else X=true end endthread if {IsDet X} then skip else X=false end endendThis program will give a di�erent binding of X depending on the sheduling of the threads. There-fore, we an see that adding IsDet has had the onsequene of making the model lose its delara-tiveness.) Page 11 of 25

The demand-driven onurrent omputation model from hapter 4.5.Solution: The demand-driven onurrent model is delarative and is also a superset of thedata-driven onurrent model, so the result will be the same as for b).d)The stateful, sequential omputation model from hapter 6.Solution: The stateful, sequential model is not delarative, and adding IsDet will not hangethat, sine we an still write the same non-delarative programs as before.

Page 12 of 25

Extending PProblem 6: (25%)Remember the toy language P that we wrote grammars, a parser and an interpreter for in theprojet.We want to extend P with lists. A list is a omposite value that ontains a sequene of zero ormore values. A list expression an be written with the keyword list, followed by an openingparanthesis, followed by a omma-separated sequene of zero or more expressions, followed by alosing paranthesis. A list expression an stand alone as a program. The value of a list expressionis the list of the values of the expression the list expression onsists of. The list list(2, 4, 6) isthe value of the following list expression.list(1+1, 2+2, 3+3)We also need to add some operations for working with lists. The operation head gives the �rstelement of a list. A head expression is written with the keyword head, followed by an openingparenthesis, followed by an expression, followed by a losing parenthesis. head gives a runtimefailure if the value of the expression between the parentheses is an empty list or not a list. Thefollowing expression has the number 1 as its value:head(list(1, 2, 3))The operation tail gives the result of removing the �rst element from a list. A tail expressionis written with the keyword tail, followed by an opening parenthesis, followed by an expression,followed by a losing parenthesis. tail gives a runtime failure if the value of the expression betweenthe parantheses is an empty list or not a list. The following expression has as its value the listlist(2, 3).tail(list(1, 2, 3))The operation ons gives the result of onstruting a list from two expressions, with the value of the�rst beoming the head and the value of the seond beoming the tail. A ons expression is writtenwith the keyword ons, followed by an opening parenthesis, followed by an expression, followed by aomma, followed by an expression, followed by a losing parenthesis. ons gives a runtime failure ifthe value of the seond expression is not a list. The following expression has as its value the nestedlist list(list(1, 2) 3, 4).ons(list(1, 2) list(3, 4))Here is an example program that �nds the length of a list. The program returns the number 3.funtionslength(xs)if xs==list() then 0else 1+all length(tail(xs))endendin all length(list(1,2,3))end Page 13 of 25

Here is an example program that appends two lists. The program returns the listlist(1, 2, 3, 4, 5, 6).funtionsappend(xs, ys)if xs==list() then yselse ons(head(xs), all append(tail(xs), ys))endendin all append(list(1,2,3), list(4,5,6))endIn the subproblems a)-), you will modify the grammars, parser and interpreter to make it able tohandle lists, list expressions and the list operations head, tail and ons. In the appendix you will�nd the suggested solution from the projet. Give referenes to the line numbers where you willmake a modi�ation or an addition. Make reasonable assumptions where neessary.a)Write the modi�ations and additions you will make to the grammars for the onrete and abstratsyntax.Solution: Conrete syntax:
• Add the following after line 10:| <List> | <Head> | <Tail> | <Cons>
• Add the following after line 25 (line numbers before the above addition):<List> ::= list '(' <ListElements> ')'<ListElements> ::= epsilon | <Expr> | <Expr> ',' <ListElements><Head> ::= head '(' <Expr> ')'<Tail> ::= tail '(' <Expr> ')'<Cons> ::= ons '(' <Expr> <Expr> ')'Abstrat syntax:
• Add the following after line 36 (line numbers before the above additions):| <List>| <Head>| <Tail>| <Cons>
• Add the following after line 50 (line numbers before the above additions):<List> ::= nil | <Expr> '|' <List><Head> ::= head(<Expr>)<Tail> ::= tail(<Expr>)<Cons> ::= ons(<Expr> <Expr>)Page 14 of 25

b)Write the modi�ations and additions you will make to the parser.Solution:
• Add the following after line 44:[℄ list then S3 inS2 = '('|S3ase S3of ')'|S4 then Sn=S4 nilelse{SeqAsList Expr Comma S3 ')'|Sn}end[℄ head then S3 inS2 = '('|S3head({Expr S3 ')'|Sn})[℄ tail then S3 inS2 = '('|S3tail({Expr S3 ')'|Sn})[℄ ons then S3 S4 inS2 = '('|S3ons({Expr S3 ','|S4} {Expr S4 ')'|Sn}))Write the modi�ations you will make to the interpreter. When a program has a list as its value,the interpreter should return that value as an Oz list.Solution:
• Add the following after line 60:[℄ head(E) then H|_={Eval E Env} in H[℄ tail(E) then _|T={Eval E Env} in T[℄ ons(E1 E2) then {Eval E1 Env}|{Eval E2 Env}
• Change lines 61-63 (line numbers before the above addition) to:else if {IsInt AST} orelse {IsBool AST} orelse {IsList AST} then ASTelseif {IsAtom AST} then {Lookup AST Env}endd)We now want to add stati typeheking to P. Explain as onretely as possible what hanges wean make to the grammars, the parser, the interpreter and to the system as a whole in order toaomplish this. Write no more than one page.Solution: (The language will have four types: numbers, booleans, lists and funtions. Inaddition there an be di�erent types of lists and funtions depending on the type of the ontentsof a list and the type on the parameters and return value of a funtion.) We need to extend theonrete syntax to inlude spei�ations of the type of eah identi�er introdued in a let expressionPage 15 of 25

or as a formal argument to a funtion. We also need to extend the onrete syntax to inludespei�ations for the return values of funtions and the type of the ontents of a list. The abstratsyntax must be extended to hold these type spei�ation in the nodes for let expressions, funtiondelarations and list expressions. The parser must be extended to parse the new onrete syntaxand build the new abstrat syntax trees.The type heking itself will happen in a new funtion that takes an AST as input and returnsthe type of the AST. If the AST is misstyped, the funtion raises an exeption. For a node in theAST, the funtion �nds the types of the hildren and from them alulates the type of the node.At the bottom of the tree we �nd number and boolean literals, whose types an be found withoutreursion.The interpreter only needs to be hanged to ignore the type information in the AST.

Page 16 of 25

AppendixConrete and abstrat syntax for P1 Conrete syntax (epsilon means nothing)23 <Expr> ::= <ExprP2> | <Expr> <COP> <ExprP2>4 <ExprP2> ::= <ExprP3> | <ExprP2> <EOP> <ExprP3>5 <ExprP3> ::= <ExprP4> | <ExprP3> <TOP> <ExprP4>6 <ExprP4> ::= <LetExpr>7 | <Funtions>8 | <IfExpr>9 | <FunApp>10 | (Ident) | (Num) | (Bool) | '(' <Expr> ')'11 <LetExpr> ::= let <LetItems> in <Expr> end12 <LetItems> ::= <LetItem> | <LetItem> ',' <LetItems>13 <LetItem> ::= (Ident) '=' <Expr>14 <Funtions> ::= funtions <FunDefs> in <Expr> end15 <FunDefs> ::= <FunDef> | <FunDef> ',' <FunDefs>16 <FunDef> ::= (Ident) '(' <FormalParamList> ')' <Expr> end17 <FormalParamList> ::= epsilon | <FormalParams>18 <FormalParams> ::= (Ident) | (Ident) ',' <FormalParams>19 <IfExpr> ::= if <Expr> then <Expr> else <Expr> end20 <FunApp> ::= all (Ident) '(' <AtualParamList ')'21 <AtualParamList> ::= epsilon | <AtualParams>22 <AtualParams> ::= <Expr> | <Expr> ',' <AtualParams>23 <COP> ::= '==' | '!=' | '>' | '<' | '=<' | '>='24 <EOP> ::= '+' | '-'25 <TOP> ::= '*' | '/'2627 Abstrat syntax2829 <Expr> ::= op(<OP> <Expr> <Expr>)30 | <LetExpr>31 | <Funtions>32 | <IfExpr>33 | <FunApp>34 | <Ident>35 | <Number>36 | <Bool>37 <LetExpr> ::= letexpr(<LetItems> <Expr>)38 <LetItems> ::= <LetItem> '|' nil | <LetItem> '|' <LetItems>39 <LetItem> ::= letitem(<Ident> <Expr>)40 <Funtions> ::= funtions(<FunDefs> <Expr>)41 <FunDefs> ::= <FunDef> '|' nil | <FunDef> '|' <FunDefs>42 <FunDef> ::= fundef(<Ident> <FormalParams> <Expr>)43 <FormalParams> ::= nil | <Ident> '|' <FormalParams>44 <IfExpr> ::= ifexpr(<Expr> <Expr> <Expr>)45 <FunApp> ::= funapp(<Ident> <AtualParams>)46 <AtualParams> ::= nil | <Expr> '|' <AtualParams>Page 17 of 25

47 <OP> ::= '==' | '!=' | '>' | '<' | '=<' | '>=' | '+' | '-' | '*' | '/'48 <Ident> ::= <OzAtom>49 <Num> ::= <OzInt>50 <Bool> ::= <OzBool>Parser for P1 % Grammar transformation.2 %3 % To enable parsing with left-right reursive desent, the first three4 % lines of the grammar have been hanged to the following. (The5 % operators are still parsed left-assosiatively.)6 %7 % <Expr> ::= <ExprP2> | <ExprP2> <COP> <Expr>8 % <ExprP2> ::= <ExprP3> | <ExprP3> <EOP> <ExprP2>9 % <ExprP3> ::= <ExprP4> | <ExprP4> <TOP> <ExprP3>1011 funtor12 export parse:Parse13 define1415 fun {Expr S1 Sn}16 {OpSeq ExprP2 COP S1 Sn}17 end1819 fun {ExprP2 S1 Sn}20 {OpSeq ExprP3 EOP S1 Sn}21 end2223 fun {ExprP3 S1 Sn}24 {OpSeq ExprP4 TOP S1 Sn}25 end2627 fun {ExprP4 S1 Sn}28 T|S2=S1 in29 ase T30 of let then {LetExpr S1 Sn}31 [℄ funtions then {Funtions S1 Sn}32 [℄ 'if' then {IfExpr S1 Sn}33 [℄ all then {FunApp S1 Sn}3435 [℄ '(' then E S3 in36 E = {Expr S2 S3}37 S3=')'|Sn38 E39 [℄ ident(X) then Sn=S2 X40 [℄ num(X) then Sn=S2 X41 [℄ bool(X) then Sn=S2 ase X42 of 'true' then true43 [℄ 'false' then falsePage 18 of 25

44 end45 end46 end4748 fun {LetExpr S1 Sn}49 S2 S3 X1 X2 in50 S1 = let|S251 X1 = {SeqAsList LetItem Comma S2 'in'|S3}52 X2 = {Expr S3 'end'|Sn}53 letexpr(X1 X2)54 end5556 fun {Funtions S1 Sn}57 S2 S3 X1 X2 in58 S1 = funtions|S259 X1 = {SeqAsList FunDef Comma S2 'in'|S3}60 X2 = {Expr S3 'end'|Sn}61 funtions(X1 X2)62 end6364 fun {LetItem S1 Sn}65 S2 S3 I E in66 S1 = ident(I)|S267 S2 = '='|S368 E = {Expr S3 Sn}69 letitem(I E)70 end7172 fun {FunDef S1 Sn}73 I FParams Body S2 S3 S4 in74 ident(I)|S2=S175 S2='('|S376 FParams = {FormalParamList S3 ')'|S4}77 Body = {Expr S4 'end'|Sn}78 fundef(I FParams Body)79 end8081 fun {FormalParamList S1 Sn}82 ase S183 of [')'℄ then S1=Sn nil84 [℄ ')'|_ then S1=Sn nil85 else {SeqAsList86 fun {$ S1 Sn}87 ase S1 of ident(I)|S2 then Sn=S2 I end88 end89 Comma S1 Sn}90 end91 end9293 fun {IfExpr S1 Sn} Page 19 of 25

94 X1 X2 X3 S2 S3 S4 in95 S1 = 'if'|S296 X1 = {Expr S2 'then'|S3}97 X2 = {Expr S3 'else'|S4}98 X3 = {Expr S4 'end'|Sn}99 ifexpr(X1 X2 X3)100 end101102 fun {FunApp S1 Sn}103 I AParams S2 S3 in104 S1 = all|S2105 S2 = ident(I)|'('|S3106 AParams = {AtualParamList S3 ')'|Sn}107 funapp(I AParams)108 end109110 fun {AtualParamList S1 Sn}111 ase S1112 of [')'℄ then S1=Sn nil113 [℄ ')'|_ then S1=Sn nil114 else {SeqAsList Expr Comma S1 Sn}115 end116 end117118 fun {SeqAsList NonTerm Sep S1 Sn}119 X1 S2 in120 X1 = {NonTerm S1 S2}121 ase S2122 of nil then S2=Sn [X1℄123 [℄ T|S3 then if {Sep T} then X1|{SeqAsList NonTerm Sep S3 Sn}124 else S2=Sn [X1℄125 end126 end127 end128129 fun {OpSeq NonTerm Sep S1 Sn}130 fun {Loop Prefix S2 Sn}131 ase S2 of T|S3 andthen {Sep T} then Next S4 in132 Next={NonTerm S3 S4}133 {Loop op(T Prefix Next) S4 Sn}134 else135 Sn=S2 Prefix136 end137 end138 First S2139 in140 First={NonTerm S1 S2}141 {Loop First S2 Sn}142 end143 Page 20 of 25

144 fun {Comma X} X==',' end145 fun {COP Y}146 Y=='<' orelse Y=='>' orelse Y=='=<' orelse147 Y=='>=' orelse Y=='==' orelse Y=='!='148 end149 fun {EOP Y} Y=='+' orelse Y=='-' end150 fun {TOP Y} Y=='*' orelse Y=='/' end151152 fun {Parse Tokens}153 {Expr Tokens nil}154 end155156 endInterpreter for P1 funtor2 export Interpret3 define45 fun {Interpret AST}6 {Eval AST nil}7 end89 fun {Eval AST Env}10 ase AST11 of op(Op E1 E2) then V1 V2 in12 V1 = {Eval E1 Env}13 V2 = {Eval E2 Env}14 ase Op15 of '==' then V1==V216 [℄ '!=' then V1\=V217 [℄ '>' then V1>V218 [℄ '<' then V1<V219 [℄ '=<' then V1=<V220 [℄ '>=' then V1>=V221 [℄ '+' then V1+V222 [℄ '-' then V1-V223 [℄ '*' then V1*V224 [℄ '/' then V1 div V225 end26 [℄ letexpr(LetItems E) then NewEnv in27 NewEnv = {FoldL28 LetItems29 fun {$ U X} I E in30 X = letitem(I E)31 {Bind I {Eval E Env} U}32 end33 Env}34 {Eval E NewEnv} Page 21 of 25

35 [℄ funtions(FunDefs E) then CEnv in36 CEnv = {FoldL FunDefs37 fun {$ U X} I FParams Body in38 X = fundef(I FParams Body)39 {Bind I funval(FParams Body CEnv) U}40 end Env}41 {Eval E CEnv}42 [℄ ifexpr(E1 E2 E3) then ase {Eval E1 Env}43 of true then {Eval E2 Env}44 [℄ false then {Eval E3 Env}45 end46 [℄ funapp(I AtualParamList) then FParams Body CEnv ParamPairs in47 funval(FParams Body CEnv) = {Lookup I Env}48 ParamPairs = loal fun {MakePairs L1 L2}49 ase L1#L2 of nil#nil then nil50 [℄ (H1|T1)#(H2|T2) then (H1#H2)|{MakePairs T1 T2}51 end52 end in53 {MakePairs FParams AtualParamList}54 end55 {Eval Body {FoldL ParamPairs56 fun {$ U X}57 Formal Atual in58 Formal#Atual = X59 {Bind Formal {Eval Atual Env} U}60 end CEnv}}61 else if {IsAtom AST} then {Lookup AST Env}62 elseif {IsInt AST} orelse {IsBool AST} then AST63 end64 end65 end6667 fun {Bind Ident Value Env}68 ase Env69 of nil then [bind(Ident Value)℄70 [℄ bind(I V)|Rest then71 if Ident==I then bind(Ident Value)|Rest72 else bind(I V)|{Bind Ident Value Rest}73 end74 end75 end7677 fun {Lookup Ident Env}78 ase Env79 of nil then raise lookupFailure(Ident Env) end80 [℄ bind(I V)|Rest then81 if Ident==I then V82 else {Lookup Ident Rest}83 end84 end Page 22 of 25

85 end8687 endExample programs in PSimple.p1 let X = 1 in X endMax.p1 funtions2 max(x, y)3 if x>y then x else y end4 end5 in6 all max(3, 4)7 endFat.p1 funtions2 fat(n)3 if n==0 then 14 else n*all fat(n-1)5 end6 end7 in8 all fat(3)9 endFib.p1 funtions2 fib(x)3 if x==0 then 0 else4 if x==1 then 1 else5 all fib(x-1) + all fib(x-2)6 end7 end8 end9 in10 all fib(12)11 end
Page 23 of 25

Fiba.p1 funtions2 fib(x)3 funtions4 fiba(x, n, mem1, mem2)5 let6 fn = if n==0 then 07 else if n==1 then 18 else mem1+mem29 end10 end11 in12 if x==n then fn13 else all fiba(x, n+1,14 fn, mem1)15 end16 end17 end18 in19 all fiba(x, 0, 0, 0)20 end21 end2223 in2425 all fib(12)2627 endOddeven.p1 funtions2 odd(x)3 if x==0 then false else all even(x-1) end4 end,5 even(x)6 if x==0 then true else all odd(x-1) end7 end8 in9 all odd(3)10 end
Page 24 of 25

Answer sheet for Problem 1, Multiple Choie.Fill in your student number and answers to Problem 1 on this page.
Student number: 1. 2. 3. 4a)b))d)e)f)g)h)i)j)
Remember to hand in this page along with the rest of your answers!

END OF EXAM

Page 25 of 25

