
Norwegian University of Siene and TehnologyFaulty of Information Tehnology, Mathematis and Eletrial EngineeringDepartment of Computer and Information SieneEXAM IN COURSE TDT 4165PROGRAMMING LANGUAGESSaturday May 28, 2005, 9.00�13.00ENGELSKContat during the exam:Per Holager (leturer), Tlf 996 17 836Per Kristian Lehre, Tlf 913 60 757Exam aid ode: CNo written material is permitted.The o�ially approved alulator is allowed.Read all of the following before you start making your answers. Answer brie�y and onisely.Unlear and unneessarily long answers will reeive lower grades.Multiple ChoieFill in your answers on the answer sheet on the last page.Only one of the alternatives in eah subproblem is orret.Problem 1: (15 %)a) Whih language is the following program fragment written in:size::BinTree a -> Integersize Empty = 0size(Node va lt rt)=1+(size lt)+(size rt)1. Prolog 2. Haskell 3. Java 4. C++
Page 1 of 11

b) What is meant by the term memoization?1. That the interfae of a omponent should be independent of the omputation model used toimplement it.2. To keep trak of the results of alls to a funtion so that future alls an be handled quiker.3. That objets an share data without any partiular preautions when all objets run in thesame thread.4. Using an eager version as an optimization over a lazy version.) Given two Oz funtions for omputing the fatorial funtion, n! (reall that 0! = 1):delare delarefun {Fa1 N} fun {Fa2 N}if N>1 then {Fa1 N-1}*N if N<1 then 1else 1 else N*{Fa1 N-1}end endend endWhih of the following is true:1. Fa1 does not ompute the funtion orretly.2. Fa2 does not ompute the funtion orretly.3. Fa1 and Fa2 are roughly equally fast.4. Fa1 is not right reursive (tail reursive), it is therefore muh slower than Fa2.d) Following the terminology of the textbook, what an be said of the type system of Oz?1. Weak and dynami2. Weak and stati 3. Strong and dynami4. Strong and statie) Whih is a orret strutural operational semantis from Chapter 13 for if-statements for thease that the ondition after if holds:1. if X then S1 else S2 end S1{X → x}

σ ∧ x = true σ ∧ x = true2. if x then S1 else S2 end S1

σ σ ∧ x = truePage 2 of 11

3. if x then S1 else S2 end S1

σ σ
if σ |= x = true.4. if X then S1 else S2 end S1{X → x}

σ ∧ X = true σ ∧ X = truef) The strutural operational semantis for failed values does not omprise the redution:
{FailedValue x xf} skip

σ σ ∧ xf = failed(x)
, beause1. that would not give a good error reation if xf is bound already.2. exeution would just stop, the store would not hange.3. then, exeution would not stop immediately.4. the result of funtion failed annot be assigned to xf beause it is not a boolean.g) What is the e�etive data type (in the �general� type notation of the letures) of the parametersin the method in the following Java ode fragment:publi lass C { publi double pr(double p1, C p2) ... }1. p1: ref double, and p2: ref C2. p1: ref double, and p2: C 3. p1: double, and p2: ref C4. p1: double, and p2: Ch) What is the e�etive data type (in the �general� type notation of the letures) of variable xdelared by following C++:int *x(har*)1. ref fun(ref har)int2. ref [0..255℄ int 3. [ref har℄ref int4. fun(ref har)ref inti) Whih of the following statements about threaded state (i.e. aumulator parameter) is the leastorret?1. often redues the number of proedure arguments.2. is an alternative to expliit state.3. is a delarative programming tehnique.4. is useful for making e�ient programs.Page 3 of 11

j) Whih language is the following program fragment written in:nyrootsyn(BM,NN,Gender):-nrootsyn(BM,NN),nyroot(NN,Gender),!.1. Prolog 2. Haskell 3. Java 4. C++ProgrammingProblem 2: (8 %)Given a Java lass for a singly linked list of Strings,publi lass LiStr { String str; LiStr next; ... }Write a Java method (publi void printList()) for this lass, that traverses the list and writesout the Strings (using System.out.println(str)). Limit yourself to the single assignment paradigm,in partiular: do not use any for- or while-loops.(If you don't know Java, use some other well known imperative language exept Oz. Remember totell whih.)Relational ModelProblem 3: (25 %)Write a funtion in the relational model that produes all permutations of a given input list of anysize. Show how your funtion should be alled with the SolveAll-funtion de�ned in the text book.Remark: You may use the built-in funtion {Append List1 List2}.ParserProblem 4: (26 %)Given a simpli�ed fragment from the syntax of Java:<term> ::= <field term> | <all term> .<field term> ::= 'id' | <term> '.' 'id' .<all term> ::= <field term> '(' <param> ')' .<param> ::= ǫ | <term> .Here, the terminal symbol 'id' represents an identi�er, the lexial analyzer will also provide theatual name in the form of an atom (in the obvious way). The symbol ǫ represents the empty string.Page 4 of 11

The following is a syntax for a semanti tree (in the book: abstrat syntax tree) for a parser in Ozfor the syntax above:<term> ::= <field term> | <all term> | nil .<field term> ::= field(id: <id's text> nxt: <term>) .<all term> ::= all(id: <id's text> prm:<term> nxt: <term>)That is, if input to the lexial analyser isNils.venn(Jens).fargethen the list of tokens input to the parser will be['id'('Nils') '.' 'id'('venn') '(' 'id'('Jens') ')''.' 'id'('farge') ℄Exept for the order of the �elds, the output should befield(id:'Nils'nxt:all(id:'venn'prm:field(id:'Jens' nxt:nil)nxt:field(id:'farge' nxt:nil)))Alternatively,PSfrag replaements
fieldfield fieldall'Nils' 'venn''Jens' nil nil'farge'

Here, edges to the next are drawn horizontally to the right.a) Is this syntax fragment a suitable starting point for writing a reursive desent parser? Explainyour reasoning. If it is not suitable, set up a suitable equivalent grammar. Try to make it as simpleas possible.b) Write a reursive desent parser in Oz for this language. The parser shall return true whenparsing sueeds and false when parsing fails.) Extend your answer to b) above, to make it produe semanti trees of the spei�ed form.Page 5 of 11

InterpreterProblem 5: (26 %)IntrodutionIn this problem we will onsider an interpreter for a very simple imperative language. The onretesyntax, i.e. the syntax for the input to the parser, doesn't matter for this exerise. We assume thatthere exists a parser that generates semanti trees (in the book: abstrat syntax trees) of the formde�ned by the syntax in Figure 1. As you see, the semanti trees are strutures of nested reords inOz. The Appendix ontains an interpreter for these trees. Your task will be to extend and disussextending the semanti tree and the interpreter.An informal desription of the semanti tree and its semantisA program (<Program> in Fig. 1) is represented as a list of statements (<Statement> in Fig. 1). Thestatements are exeuted in their order of appearane the list. There are two types of statements:assign(I E) makes a binding in the store between the variable with indenti�er I (<Identifier>in Fig. 1) and the value of the expression E (<Expression> in Fig. 1), and print(E) prints thevalue of the expression E to the sreen. A variable is reated in the store when it is �rst bound to avalue. The relationships between identi�ers and variables are permanent. A variable an be boundto a value any number of times, even to values of di�ering types. The possible types of values areintegers (<Integer> in Fig. 1) and booleans (<Boolean> in Fig. 1). When a variable is re-bound,the new value replaes the old. The semantis of expressions should be evident from the syntax.The interpreterThe interpreter an be seen as the formal de�nition of the semantis. It onsists of the main funtionExeute and some help funtions.The funtion Exeute takes as input an exeution state and returns the list of exeution statesresulting from exeuting that state one step at a time until the exeution is �nished. Eah exeutionstate is represented with a reord as de�ned in Figure 2.An exeution state onsists of the list of remaining statements and the urrent store. When in-terpretation starts, Exeute is alled with a state ontaining the whole program and an emptystore. As exeution proeeds, Exeute will be alled reursively with the exeution state resultingfrom arrying out the preeding single exeution step. When the urrent list of statements is nil,exeution is �nished.The funtion Evaluate takes as input an expression and a store and returns the value of theexpression with respet to the store.The funtion Bind takes as input an identi�er, a value and a store and returns the store resultingfrom binding the identi�er to the value in the input store.The funtion Lookup takes as input an identi�er and a store, and returns the value to whih theidenti�er is bound in the store, if it is bound.Page 6 of 11

ExampleSuppose we use the interpreter to exeute:SimpleProgram = [assign('x' 2) assign('x' add('x' 2)) print('x')℄Trae = {Exeute state(SimpleProgram empty)}Then the browser will show the answer 4, Trae will ontain the following:[state([assign(x 2) assign(x add(x 2)) print(x)℄ empty)state([assign(x add(x 2)) print(x)℄ bind(x 2 empty))state([print(x)℄ bind(x 4 empty))state(nil bind(x 4 empty))℄Subproblemsa)We want to extend the language with if-onstrutions. An if-statement (<Statement>) ontainsa onditional expression (<Expression>), a then-statement (<Statement>) and an else-statement(<Statement>). When it is exeuted, the onditional is evaluated. Then, if the result is true, thethen-statement is exeuted. Otherwise, the else-statement is exeuted. Invent a suitable extensionto the semanti tree to handle if-onstrutions. Desribe it as an extension to the syntax. WriteOz ode that will enable the interpreter to properly exeute your if-onstrutions. Indiate by linenumbers where in the syntax (Fig. 1) and interpreter your additions should be plaed.b) We want to extend the language with while-loops. A while-statement (<Statement>) ontains aonditional expression (<Expression>) and a body statement (<Statement>). When it is exeuted,the onditional expression is evaluated. If the result is true, the body statement is exeuted and thenthe while-statement is exeuted again. Otherwise, exeution proeeds with the rest of the program.Invent a suitable extension to the semanti tree to represent while-loops and show the extensionto the syntax. Write Oz ode that will make the interpreter properly exeute your while-loops.Indiate by line numbers where in the syntax and interpreter your additions should be plaed.) Explain with words, not ode or grammar rules, how you would extend the semanti tree andinterpreter with the following features:
• Dynami type heking
• Stati type hekingd) The operation of the interpreter in this exerise resembles that of the abstrat mahine usedto desribe semantis in Chapter 2 of the textbook. That mahine uses environments, but thisinterpreter seems to funtion properly without them. Why?Page 7 of 11

1 <Program> ::= "["{<Statement>}"℄"2 <Statement> ::= assign(<Identifier> <Expression>)3 | print(<Expression>)4 <Expression> ::= add(<Expression> <Expression)5 | subtrat(<Expression> <Expression>)6 | multiply(<Expression> <Expression>)7 | divide(<Expression> <Expression>)8 | equals(<Expression> <Expression>)9 | lessthan(<Expression> <Expression>)10 | greaterthan(<Expression> <Expression>)11 | <Identifier>12 | <Value>13 | 'not'(<Expression>)14 <Value> ::= <Integer>|<Boolean>15 <Identifier> ::= <Letter>{<Letter>}16 <Letter> ::= a|b||d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z17 <Integer> ::= <NonzeroDigit>{<Digit>}18 <Digit> ::= 0|<NonzeroDigit>19 <NonzeroDigit> ::= 1|2|3|4|5|6|7|8|920 <Boolean> ::= true|falseFigure 1: Syntax for the semanti tree.
<State> ::= state(<Program> <Store>)<Store> ::= bind(<Identifier> <Value> <Store>)|emptyFigure 2: Syntax for representing exeution states.

Page 8 of 11

Appendix : Interpreter for the semanti trees1 delare23 fun {Exeute State}4 ase State5 of state(nil _) then [State℄6 [℄ state(Statement|RestOfStak Store) then7 ase Statement8 of assign(Identifier Expression) then9 State|{Exeute state(RestOfStak10 {Bind Identifier {Evaluate Expression Store} Store})}11 [℄ print(Expression) then12 {Browse {Evaluate Expression Store}}13 State|{Exeute state(RestOfStak Store)}14 else raise invalidStatement(Statement) end15 end16 else raise invalidState(State) end17 end18 end1920 fun {Evaluate Expr Store}21 ase Expr22 of add(A B) then {Evaluate A Store}+{Evaluate B Store}23 [℄ subtrat(A B) then {Evaluate A Store}-{Evaluate B Store}24 [℄ multiply(A B) then {Evaluate A Store}*{Evaluate B Store}25 [℄ divide(A B) then {Evaluate A Store} div {Evaluate B Store}26 [℄ equals(A B) then {Evaluate A Store}=={Evaluate B Store}27 [℄ greaterthan(A B) then {Evaluate A Store}>{Evaluate B Store}28 [℄ lessthan(A B) then {Evaluate A Store}<{Evaluate B Store}29 [℄ 'not'(A) then {Evaluate A Store}==false30 else if {IsAtom Expr} then {Lookup Expr Store}31 elseif {IsNumber Expr} orelse Expr==false orelse Expr==true then Expr32 else raise ouldntEvaluate(Expr Store) end33 end34 end35 end3637383940414243 Page 9 of 11

44 fun {Bind Identifier Value Store}45 ase Store46 of empty then bind(Identifier Value Store)47 [℄ bind(OldIdentifier OldValue RestOfStore)48 then if OldIdentifier==Identifier then bind(Identifier Value RestOfStore)49 else bind(OldIdentifier OldValue {Bind Identifier Value RestOfStore})50 end51 else raise invalidStore(Store) end52 end53 end5455 fun {Lookup Identifier Store}56 ase Store57 of empty then raise identifierNotInStore(Identifier Store) end58 [℄ bind(BoundIdentifier Value RestOfStore) then59 if BoundIdentifier==Identifier then Value60 else {Lookup Identifier RestOfStore}61 end62 else raise invalidStore(Store) end63 end64 end

Page 10 of 11

Answer sheet for Problem 1, Multiple Choie.Fill in your student number and answers to Problem 1 on this page.
Student number: 1. 2. 3. 4a)b))d)e)f)g)h)i)j)
Remember to hand in this page along with the rest of your answers!

END OF EXAM
Page 11 of 11

