
Exam in TDT4165 Programming Languages:

Solutions

Author: Wacław Kuśnierczyk∗

Exam Date: August 8., 2007

Solutions

Problem 1 (15%)

Task 1a

Answer. According to the pensum book (p. 178), procedural abstraction is the ability to convert

any statement into a procedure value. That is, a piece of code that contains a statement or a
sequence of statements:

〈statement〉1

〈statement〉2

. . .

〈statement〉n

can be replaced by an application of an appropriately defined procedure having those statements

as its body:

proc {〈procedure〉} 〈statement〉1 〈statement〉2 . . . 〈statement〉n end

{〈procedure〉}

There are a number of benefits of using procedural abstraction. For example,

• if the same statement or sequence of statements appears in more than one place in the

code, the program may be made cleaner if an appropriate procedure is defined once and the

statements are then replaced by procedure calls;

• the procedure can be parameterized (i.e., it may take arguments), so that a number of

similar statements that differ in some detail can be replaced by an application of the same

procedure, with different arguments;

• the definition of a procedure and its execution (an application) do not have to appear in

the same place; thus, statements can be introduced in one place (e.g., in the header of a
program), but executed elsewhere;

etc.
∗Contact info: waku@idi.ntnu.no

1

Task 1b

Answer. FoldRight and FoldLeft can be implemented as follows:

fun {FoldRight List Combine Transform Null}

case List

of nil then Null

[] Head|Tail then

{Combine {Transform Head} {FoldRight Tail Combine Transform Null}}

end

end

fun {FoldLeft List Combine Transform Null}

case List

of nil then Null

[] Head|Tail then

{FoldLeft Tail Combine Transform {Combine Null {Transform Head}}}

end

end

Both definitions are recursive: both FoldRight and FoldLeft call themselves in their bodies,
rather than use a looping construct such as for ... end. Execution of FoldRight lead to a

recursive process (the operation of combination can be performed only after the rest of the list have
been folded, i.e., it must wait until the subsequent recursive calls return). Execution of FoldLeft

lead to an iterative process (the operation of combination is performed first, and then folding

is performed tail-recursively, i.e., there is no operation waiting for the result of the subsequent
recursive call).

Task 1c

Answer. Map can be implemented using both the FoldRight and FoldLeft defined above, as

follows:

fun {MapRight List Function}

{FoldRight List

fun {$ X Y} X|Y end

fun {$ X} {Function X} end

nil}

end

fun {MapLeft List Function}

{FoldLeft {Reverse List}

fun {$ X Y} Y|X end

fun {$ X} {Function X} end

nil}

end

MapLeft is less effective, since it requires the input list to be reversed first (thus, the list is traversed
twice rather than once, as in the case of MapRight).

If you answered that FoldLeft cannot be used to implement Map, and you provided a good expla-
nation, the answer was considered correct.

2

Problem 2 (20%)

Task 2a

Answer. Acording to the pensum book (p. 420), a bundled data abstraction is a data abstraction
that defines just one type of entity: an object containing both data (values) and methods (opera-

tions). An unbundled data abstraction (an abstract data type) is a data abstraction which defines

two separate kinds of entities, values and operations.

In the case of NewStructure, we do not see the definition, and we do not know whether it is part
of an implementation of a bundled or unbundled data abstraction. While there are procedures

(functions) external to Structure applied to it, it does not prove that the data abstraction is

unbundled. It is possible to define functions external to an object which simply call the internal
procedures of the object — see below.

Unbundled data abstractions are widely used in programming. Object-oriented programming
(OOP) languages are based on bundled abstractions, but many languages do not support OOP, or

support both OOP and unbundled abstract data types.

Task 2b

Answer. According to the pensum book (p. 420), a data abstraction is secure if its encapsulation

is enforced by the language, rather than explicitly by the programmer who uses the data abstrac-

tion. The content of a secure data structure can be accessed only through the operations defined
by the data asbtraction, while the content of a non-secure (open) data structure can be accessed

and modified by the programmer without using those operations.

Again, we do not know whether structures produced by NewStructure are secure or not. It is pos-

sible that such structures are bundled but insecure (they expose both the encapsulated operations
and values), bundled and secure (expose only the operations), unbundled and secure (the oper-

ations Get and Put must know a secret key to access the content of the structure), or unbundled

and insecure (the content is accessible to anyone).

It is possible to implement a secure data abstraction in a declarative model of computation by

means of encapsulation as a bundled abstraction, a declarative object. It is also possible to im-
plement an unbundled secure data abstraction in a declarative model, though without the use of

unique names (which are available only in a non-declarative model) it is not particularly useful
(each instance has to have a key explicitly defined by the programmer, rather than generated by

NewName).

Declarative data abstractions can be defined in a non-declarative model of computation. If the

abstractions do not use explicit state, they will behave declaratively, even if the rest of the program

performs stateful computations.

Non-secure (open) data abstractions are widely used in programming, and are useful especially
in situations where security is not essential and easy access to the content of a structure is more

inmportant.1

Task 2c

Answer. Examples of linear data abstractions are stacks (LIFO, last in first out linear structures),
queues (FIFO, first in first out linear structures), arrays or vectors (random-access linear struc-

1Strictly speaking, if it is possible to access the content of a data structure omitting the allowed operations, the data
structure is not an instance of a data abstraction.

3

tures), etc. Examples of non-linear data abstractions are trees, heaps, directed acyclic graphs,

etc.

The data abstraction represented by NewStructure can be linear or non-linear. We do not see

its definition, but from the behaviour and the names of the operations used, it is reasonable to
assume that it is a stack.

Task 2d

Answer. NewStructure and the procedures Put and get can be implemented as follows:

NewStructure =

local

fun {Pack Content}

fun {Put Item}

{Pack Item|Content}

end

fun {Get Item}

case Content

of Head|Tail then Item = Head {Pack Tail} end

end

in

structure(put:Put get:Get)

end

in

fun {$} {Pack nil} end

end

fun {Put Structure Item} {Structure.put Item} end

fun {Get Structure Item} {Structure.get Item} end

The abstraction is declarative: there is no mutable state kept inside Structure; any operation
that changes the content must result in a new structure, rather than in an update of the existing

one. The abstraction is bundled: the operations are encapsulated within an object; the external

Put and get are mere syntactic sugar, and they call the internal operations of the object passed to
them as an argument. The abstraction is secure: the content of a structure can be accessed only

through the operations encapsulated in it.

Task 2e

Answer. Given the three orthogonal (independent) binary criteria — declarativeness, bundled-

ness, openness — we can think of eight different types of data abstractions. The pensum book

discusses the utility of five of those, and illustrates the discussion with implementations of the
stack data abstraction:

1. an open, declarative, unbundled stack;

2. a secure, declarative, unbundled stack;

3. a secure, declarative, bundled stack;

4

4. a secure, stateful (non-declarative), unbundled stack;

5. a secure, stateful, bundled stack.

For details, see p. 420. In principle, it is possible to implement data abstractions of the remaining

three types, but this is not necessarily very useful (once they are implemented, it is easy to turn
them into secure ones).

Of the five types above, only the first and the third can be implemented in a declarative model

of computation. The second type requires unique names, which are available only in a non-

declarative model (even if the data abstraction is declarative), and the remaining two require
explicit state.

None of these types requires concurrency, and thus none of them requires shared-state concur-
rency.

Problem 3 (20%)

Task 3a

Answer. Lazy execution is a strategy for the execution of statements in which statements are ex-
ecuted when the results of the execution are needed, not when the statements are met in the pro-

gram. Lazy execution is useful, for example, to postpone the computation of an infinite stream by
a producer until elements of the stream are demanded by consumers, i.e., to implement demand-

driven concurrent computation.

Task 3b

Answer. SumSquares can be implemented in the kernel language as follows:

SumSquares =

proc {$ N1 N2 ?Result}

local Compute in

Compute =

proc {$?Result}

Result = N1*N1+N2*N2

end

{ByNeed Compute Result}

end

end

Task 3c

Answer. ListEvenIntegers and the helper function ListItem can be implemented as follows:2

fun {ListEvenIntegers}

fun lazy {Enumerate N}

N|{Enumerate N+2}

end

in

2Of course, not in the kernel language.

5

{Enumerate 0}

end

fun {ListItem List N}

case List

of Head|Tail then

if N == 1 then Head

else {ListItem Tail N-1}

end

end

end

Task 3d

Answer. The abstract machine for the kernel language must include a trigger store. The semantic
statement ({ByNeed 〈x 〉 〈y 〉}, E) is executed in the following steps (p. 282 in the pensum book):

• if E(〈x〉) is determined, a new thread with the semantic statement ({〈x 〉 〈y 〉}, E) is created;

• if E(〈x〉) is not determined, the pair (E(〈x〉), E(〈y〉)) is added to the trigger store (unless

there already is such a pair there).

An application of a lazy function is equivalent to a by-need application of a one-argument proce-

dure x to an unbound variable y which will be bound by the procedure as a result of the applica-
tion, when needed (as in Task 3b). When the variable is needed, the pair (x, y) is removed from

the trigger store, and a thread is created with the semantic statement ({〈x 〉 〈y 〉}, {〈x〉 → x, 〈y〉
→ y}), where 〈x〉 and 〈y〉 are any two distinct identifiers. A variable is needed if its value must be
determined in order for some operation to continue. If the variable is bound, its value is retrieved

from the single assignment store. If the variable is not bound, and it appears as the second element

of some pair in the trigger store, a new thread is created, as above. If the variable is not bound,
but there is no corresponding trigger, the operation which needs the variable suspends. The first

line in the following code specifies an operation in which the variable named by the identifier

Variable is needed, the second line — an operation where the variable is not needed:

{Browse Variable+0}

{Browse Variable}

Lazy execution, as specified above, requires the following riles for variable reachability:

• if a variable appears as the first element of a pair in the trigger store, and the second element

of that pair is reachable, then the variable is reachable;

• if a variable is unreachable, then every pair in the trigger store that contains the variable as

the second element should be removed from the trigger store.

Task 3e

Answer. The first line results in the creation of a new thread which, when activated by the

scheduler, will apply Procedure to Argument.

The second line results in the creation of a new thread (if Argument is determined), or in the

creation of a trigger (if Argument is not determined). In the latter case, no new thread is created
until there is a need for the value of Argument.

6

Problem 4 (15%)

Task 4a

Answer. The grammar for σ can be defined as follows:

〈program〉 ::= {〈instruction〉}+

〈instruction〉 ::= 〈definition〉 | 〈expression〉
〈definition〉 ::= 〈variable-definition〉 | 〈function-definition〉
〈expression〉 ::= 〈identifier〉 | 〈numeral〉 | 〈application〉

〈variable-definition〉 ::= ‘(’ ‘define’ 〈identifier〉 〈expression〉 ‘)’
〈function-definition〉 ::= ‘(’ ‘define’ ‘(’ 〈identifier〉 〈identifier〉 ‘)’ 〈expression〉 ‘)’

〈application〉 ::= ‘(’ 〈identifier〉 〈expression〉 ‘)’

Task 4b

Answer. The grammar for σ is a context-free grammar: one in which each rule is of the form
A ::= γ, where γ is a string of terminals and nonterminals. A context-sensitive grammar is one in

which the rules have the form αAβ ::= αγβ, with α and β strings of terminals and nonterminals.

Since both α and β may be empty, every context-free grammar (such as the one for σ) is also a
context-sensitive grammar — thus, the grammar above is context-sensitive.3 The following is an

example of a non-context-free grammar:

〈operator〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈operator〉〈numeral〉 ::= ‘-’ 〈numeral〉

The grammar for σ is not ambiguous. A grammar is ambiguous if there are strings that can be
generated by the grammar in more than one way — strings that have more than one parse tree, or

more than one leftmost derivation. The following is a simple example of an ambiguous grammar:

〈expression〉 ::= 〈expression〉 ‘-’ 〈expression〉 | ‘1’

The string ‘1 - 1 - 1’, for example, has two parse trees.

Task 4c

Answer. The syntax-checker can be implemented as follows:

\insert solve.oz

declare

fun {CheckSyntax Tokens}

{SolveAll fun {$} {CheckProgram Tokens nil} true end} \= nil

end

proc {CheckProgram Tokens Rest}

Instructions in

choice

3If you answered that the grammar for σ is not context-sensitive because it is context-free, the answer was not consid-
ered incorrect, though, strictly speaking, it is incorrect.

7

{CheckExpression Tokens Instructions}

[] {CheckDefinition Tokens Instructions}

end

{CheckInstructions Instructions Rest}

end

proc {CheckInstructions Tokens Rest}

choice

Tokens = nil Rest = nil

[] {CheckProgram Tokens Rest}

end

end

proc {CheckDefinition Tokens Rest}

choice

{CheckVariableDefinition Tokens Rest}

[] {CheckFunctionDefinition Tokens Rest}

end

end

proc {CheckExpression Tokens Rest}

choice

{CheckIdentifier Tokens Rest}

[] {CheckNumber Tokens Rest}

[] {CheckApplication Tokens Rest}

end

end

proc {CheckVariableDefinition Tokens Rest}

Identifier Expression in

Tokens = ’(’|’define’|Identifier

{CheckIdentifier Identifier Expression}

{CheckExpression Expression ’)’|Rest}

end

proc {CheckFunctionDefinition Tokens Rest}

FunctionIdentifier ArgumentIdentifier Expression in

Tokens = ’(’|’define’|’(’|FunctionIdentifier

{CheckIdentifier FunctionIdentifier ArgumentIdentifier}

{CheckIdentifier ArgumentIdentifier ’)’|Expression}

{CheckExpression Expression ’)’|Rest}

end

proc {CheckIdentifier Tokens Rest}

Tokens = identifier(_)|Rest

end

proc {CheckNumber Tokens Rest}

Tokens = number(_)|Rest

end

proc {CheckApplication Tokens Rest}

Identifier Expression in

Tokens = ’(’|Identifier

{CheckIdentifier Identifier Expression}

{CheckExpression Expression ’)’|Rest}

end

8

Problem 5 (20%)

Task 5a

Answer. The data abstraction can be specified as follows:

{ d is undefined }

make d an empty dequeue

{ d = 〈〉 }

{ d = 〈v1, v2, . . . , vn〉, e = v }

push the value of e onto d

{ d = 〈v1, v2, . . . , vn, v〉, e = v }

{ d = 〈v1, v2, . . . , vn−1, vn〉, e is undefined }

pop from d a value and store it in e

{ d = 〈v1, v2, . . . , vn−1〉, e = vn }

{ d = 〈v1, v2, . . . , vn〉, e = v }

shift the value of e onto d

{ d = 〈v, v1, v2, . . . , vn〉, e = v }

{ d = 〈v1, v2, . . . , vn−1, vn〉, e is undefined }

unshift from d a value and store it in e

{ d = 〈v2, . . . , vn〉, e = v1 }

Task 5b

Answer. The function NewDequeue can be implemented as follows:

fun {NewDequeue}

Content = {NewCell nil}

proc {Push Item}

Content := {List.append @Content [Item]}

end

proc {Pop ?Item}

if @Content \= nil then

Item = {List.last @Content}

Content := {List.take @Content {List.length @Content}-1}

end

end

proc {Shift Item}

Content := Item|@Content

end

proc {Unshift ?Item}

case @Content

of Head|Tail then

Item = Head

9

Content := Tail

end

end

in

proc {$ Message}

case Message of

push(Item) then {Push Item}

[] pop(Item) then {Pop Item}

[] shift(Item) then {Shift Item}

[] unshift(Item) then {Unshift Item}

end

end

end

Task 5c

Answer. Dequeues as implemented above are secure: the cell Content is accessible only to the

procedures Push, Pop, Shift, and Unshift; in turn, these procedures are accessible only through
sending messages to the anonymous procedure (the dispatcher) returned by NewDequeue.

Problem 6 (10%)

Task 6a

Answer. The clients are implemented in a declarative way: none of the elements of their im-

plementation requires a non-declarative model of computation. However, their behaviour is not
necessarily declarative: the result of an application of a client’s compute function is dependent

on what the server does, and the server may be non-declarative, i.e., the behaviour of the clients
may be dependent on an external mutable state, that of the server. With an implementation of the

server as below, clients will behave declaratively, even though the server has an internal mutable

state.

Both answers positive and negative answers were considered correct if sufficient justification was

provided.

Task 6b

Answer. The server can be implemented as follows:

fun {NewServer}

InputStream

InputPort = {NewPort InputStream}

proc {Process Stream}

case Stream

of message(Input Function Output)|Rest

then Output = {Function Input}

{Process Rest}

end

end

proc {Call Message}

{Send InputPort Message}

10

end

in

thread {Process InputStream} end

server(call:Call)

end

The server is not a declarative object: its implementation requires ports, a feature of a non-

declarative model of computation.

Task 6c

Answer. For an implementation of a server to which an arbitrary (an not specified a priori)
number of clients can be connected at runtime, mutable state is necessary. At minimum, ports

must be available. A purely declarative model of computation is insufficient.

11

