
Norwegian University of S
ien
e and Te
hnologyFa
ulty of Information Te
hnology, Mathemati
s and Ele
tri
al EngineeringDepartment of Computer and Information S
ien
eEXAM IN COURSE TDT 4165PROGRAMMING LANGUAGESThursday November 30, 2005, 9.00�13.00ENGELSKConta
t during the exam:Wa
ªaw Kusnier
zyk, Tlf 948 94 894Ole Edsberg, Tlf 952 81 586Exam aid
ode: CNo written material is permitted.The o�
ially approved
al
ulator is allowed.The exam was
reated by Wa
ªaw Ku±nier
zyk and Ole Edsberg.The quality of the exam was approved by Per Kristian Lehre.
Read all of the following before you start giving your answers:

• Answer brie�y and
on
isely. Un
lear and unne
essarily long answers will re
eive lower grades.
• For tasks where we ask you to give an argument for you answer, a
orre
t answer without anargument will result in
lose to zero s
ore for that task. Remember to give arguments!
• The programming problems must be solved with Oz.
• You may use the following fun
tions and pro
edures from the textbook, without de�ning them:Append, Drop, FoldL, FoldR, ForAll, Length, Map, Max, Min, Member, Reverse, Take, Solve,SolveAll.

Page 1 of 8

Problem 1: (10%)a)Write a fun
tion {Map List Fun
tion} that applies the one-argument fun
tion Fun
tion to ea
helement in List and returns a list with the results of the appli
ations, i the same order as the
orresponding elements in List.For example, the appli
ation {Map [true false true℄ fun{$ Element} Element == false end}should return the list [false true false℄.b)It is possible to make variants of Map that are
orre
t with respe
t to a) but that perform the
allsto Fun
tion in di�erent orders. Can this di�eren
e between the variants a�e
t the return value ofa program
alling Map? Give
onvin
ing arguments for your answers.Problem 2: (10%)Consider the following produ
er/
onsumer-situation:pro
 {Produ
e Stream}fun {Enumerate Number}{Delay 100}pro
 {$} {Display Number} end | {Enumerate Number+1}endinStream = {Enumerate 1}endpro
 {Consume Stream}
ase Streamof Head|Tail then {Head} {Consume Tail}else skipendend<Skjult kode>a)During an exe
ution of the
ode above, the following sequen
e of numbers was shown in the Browserwindow (one per line): 3, 45, 8, 12,Some of the
ode is hidden. Whi
h of the following alternatives for the hidden
ode makes theobserved behaviour possible a

ording to the semanti
s de�ned in
hapter 4 of the textbook? Givea
onvin
ing argument for your answer.1. pro
 {Display Number}{Delay {OS.rand} mod 1000} {Browse Number}endlo
al Numbers in{Produ
e Numbers}{Consume Numbers}end Page 2 of 8

2. pro
 {Display Number}{Delay {OS.rand} mod 1000} {Browse Number}endlo
al Numbers inthread {Produ
e Numbers} endthread {Consume Numbers} endend3. pro
 {Display Number}{Delay {OS.rand} mod 1000} {Browse Number}endlo
al Numbers inthread {Produ
e Numbers} endthread {Consume Numbers} endthread {Consume Numbers} endend4. pro
 {Display Number}thread {Delay {OS.rand} mod 1000} {Browse Number} endendlo
al Numbers in{Produ
e Numbers}{Consume Numbers}end5. pro
 {Display Number}thread {Delay {OS.rand} mod 1000} {Browse Number} endendlo
al Numbers inthread {Produ
e Numbers} endthread {Consume Numbers} endend6. pro
 {Display Number}thread {Delay {OS.rand} mod 1000} {Browse Number} endendlo
al Numbers inthread {Produ
e Numbers} endthread {Consume Numbers} endthread {Consume Numbers} endend{Delay N} freezes the thread in N millise
onds. {Delay {OS.rand} mod 1000} freezes the threadin a random number of millise
onds (between 0 and 1000).b)Whi
h of the alternatives for the hidden
ode guarantees that the sequen
e of numbers displayedin the Browser window will be 1, 2, 3, 4,... ? Give a
onvin
ing argument for your answer.Problem 3: (20%)Consider the fun
tion Fun
tion with the following behaviour:Page 3 of 8

• The
all {Fun
tion a} returns a value, but displays nothing in the Browser window.
• The
all {{Fun
tion a} b} returns a value and displays a in the Browser window.
• The
all {{{Fun
tion a} b}
} returns a value and displays a and b on two separate linesin the Browser window.
• . . .Generally, a
all { . . . {{Fun
tion a1} a2} . . . an} will return a value and display the values of thearguments a1, a2, . . . , an−1, in that order, ea
h on a separate line in the Browser window, for anarbitrary natural number n.1a)Use the template below to make an implementation of Fun
tion that will give the behaviour spe
-i�ed above.fun {Fun
tion Argument}...endb)Use the template below to implement a fun
tion Apply that takes two arguments and performs asequen
e of nested appli
ations of the fun
tion (the �rst argument) to the values in the list (these
ond argument), and returns the result of the last appli
ation.fun {Apply Fun
tion Arguments}...endFor example, ea
h of the following appli
ations should display 1, 2, 3, og 4 on four separate lines inthe Browser window:{{{{{Fun
tion 1} 2} 3} 4} 5}{Apply Fun
tion [1 2 3 4 5℄}{Apply {Apply Fun
tion [1 2 3℄} [4 5℄}

1If n = 0, there is no fun
tion
all! We assume n > 0.Page 4 of 8

Problem 4: (20%)You have a de
k of ordinary playing
ards that you intend to play poker with.2 The de
k is missingsome
ards, but
ontains no dupli
ates.In poker there are types of hands with spe
ial signi�
an
e. (A poker hand
onsists of �ve
ards).For example, all hands
onsisting of three
ards of one rank and two
ards of another rank belongto the hand type full house. You want to use Oz to �nd out how many di�erent hands of ea
h handtype it is possible to draw from your de
k.3A natural solution would be to
al
ulate the number of possible hands of ea
h type mathemati-
ally. To avoid this work, we will instead try to use a generate-and-test strategy in the relationalprogramming model.a)De�ne data stru
tures that are suitable to represent
ards, de
k and hands in Oz. Use BNF orEBNF. Take a look at the next subproblem to �nd out how the data stru
tures will be used.b)Write a fun
tion {CountHands De
k HandType}. The parameter De
k is a representation of thede
k of the form that you de�ned in the previous subtask. The parameter HandType is a booleanfun
tion som de�ning a hand type. An example of su
h a hand type fun
tion is FullHouse; the
all{FullHouse Hand} returns true if the hand Hand belongs to the type full house, and false other-wise. (You don't need to implement the hand type fun
tions.) The
all {CountHands De
k HandType}should return the number of possible hands from the de
k De
k that belong to the hand type de�nedby HandType.Example: The
all {CountHands De
k FourOfAKind} should return the number 624 (13× (52−4))if De
k is a
omplete de
k and FourOfAKind is a fun
tion returning true for hands that
ontain for
ards of the same rank and false otherwise.Use the relational
omputation model. We will a

ept a naive generate-and-test solution. Explainthe disadvantages of this kind of solution.Problem 5: (20%)The message pssing,
on
urrent
omputation model from
hapter 5 of the textbook introdu
es ports.The syntax for port-statmenets is as follows:Creating a port: {NewPort 〈Stream〉 〈Port〉}Sending til port: {Send 〈Port〉 〈Message〉}where 〈Stream〉, 〈Port〉, and 〈Message〉 stand for identi�ers. If we
onsider ports as data abstra
tions,we
an spe
ify their behaviour with the following assertions:{ Stream 7→ s ∧ s is unbound ∧ Port 7→ p ∧ p is unbound }{NewPort Stream Port}2A
omplete de
k
ontains one
ard for ea
h possible
ombination of suit and rank. The suits are:
lubs, diamonds,spades and hearts. The ranks are: a
e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ja
k, queen, king.3Two hands are identi
al if they
ontain the same
ards, irrespe
tively of the order in whi
h they were drawn. Ifthere are N
ards in the de
k, the total number of possible hands are `

N

5

´

=
N!

5!(N−5)!
. Hint: You don't need to applysu
h
al
ulations to solve this problem. Page 5 of 8

{ Stream 7→ s ∧ s is a read-only view of s
′ ∧Port 7→ p ∧ p is a port asso
iated with s
′ ∧

s
′ is a newly
reated unbound variable }{ Port 7→ p ∧ p is a port asso
iated with s ∧ s is unbound ∧Message 7→ m ∧ (m is unbound ∨ m has some value v) }{Send Port Message}{ Port 7→ p ∧ p is a port asso
iated with s

′ ∧Message 7→ m ∧ (m is unbound ∨ m has the value v)4 ∧
s
′ is a newly
reated unbound variable ∧

s is bound to a newly
reated tuple with `|' as its label,and m and a read-only view of s
′ as its �elds }The arrow ` 7→' symbolizes a binding, in the
urrent environment, between an identi�er and avariable.Following the textbook, we do not distinguish between bound variables and the values they arebound to. (For example, we say `p is a port' rather than `p is a variable bound to a port value'.)We assume that Port, Stream, and Message are de
lared before they are used, and that NewPortand Send are bound to pro
edures for
reating a new port and sending to a port, respe
tively (seebelow).For the sake of simpli
ity we let the behaviour of NewPort be unde�ned in those
ases wheree oneor both of the arguments are bound variables. We also let the behaviuor of Send be unde�ned inthose
ases where the �rst argument is an unbound variable or a value that is not a port.a)Do the assertions guarantee that the stream asso
iated with a port
an neverbe extended (that is,that its end � an unbound variable �
an never be bound) in any way other than by applyingSend to the port? Justify your answer.b)What kinds of language elements are ne
essary to make an implementation of ports that wouldsatisfy the above spe
i�
ation?5Can ports be implemented in:

• the de
larative, sequential
omputation model?
• the de
larative,
on
urrent
omputation model?
• the sequential
omputation model with expli
it state?
• the
omputation model with shared-state
on
urren
y?Give
onvin
ing arguments for your answers.
)Use the template below to implement the pro
edures NewPort and Send. Assume that NewPort willalways be applied to two unbound variables, and that the �rst argument to Send will always be aport (you do not need to verify these assumptions in your
ode).4That is: if m is unbound before the exe
ution, it is unbound after the exe
ution; if m is bound to a value v beforethe exe
ution, it is bound to the same value after the exe
ution.5Ports
an trivially be implemented with ports. Please do not in
lude this possibility in your answer.Page 6 of 8

pro
 {NewPort Stream Port}pro
 {Send Message}...end...in...port(send:Send)endpro
 {Send Port Message}...endd)Does your implementation guarantee that the stream asso
iated to a port
an never be extendedin any way other than by applying Send to the port? Is it possible to make an implementationthat guarantees this without modifying the implementation of the Oz interpreter/
ompiler? Give
onvin
ing arguments for your answers.Problem 6: (20%)In this task we will
onsider a programming language f. f is a subset of Oz with a lot in
ommonwith lambda
al
ulus. The syntax of f is de�ned by the following EBNF grammar:<Program> ::= '{' Browse <Expr> '}'<Expr> ::= '{' <Expr> { <Expr> } '}'| fun '{' '$' <Ident> { <Ident> } '}' <Expr> end| if <Ident> '==' <Expr> then <Expr> else <Expr> end| <Ident> '*' <Expr>| <Ident> '-' <Expr>| <Ident>| <Integer><Ident> is an arbitrary identi�er in Oz, and <Integer> is an arbitrarty integer in Oz.Programs in f
an be exe
uted by feeding them to Oz just like other Oz programs. In other words,we assume that the semanti
s of programs in f are the same as if these programs were run in Oz.a)Assume that we have
reated a tokenizer for f. The tokenizer takes a program text as input andsplits it into a list of tokens. The possible tokens are the spe
ial symbols '$' '{', '}', '==', '-' and'*', the reserved keywords 'fun', 'if', 'then', 'else', 'end', identi�ers and integers. Identi�ersare represented by Oz-atoms wrapped in re
ords with the label ident. Integers are represented byOz-integers wrapped in re
ords with the label int. Note that the o

uren
e of Browse in the startof every program is
ounted as an identi�er.Given the following program in f:{Browse {fun {$ Number} Number + 2 end 2}}Page 7 of 8

The resulting token list would be:['{' ident('Browse') '{' 'fun' '{' '$' ident('Number') '}'ident('Number') '+' int(2) 'end' int(2) '}' '}'℄Write a fun
tion {ValidateSyntax Tokens} that returns true if Tokens represents a valid programa

ording to the grammar and false otherwise.b)Write a program in f that
al
ulates 1000! (1×2× . . .×1000) and displays the result on the s
reen.Hint: The di�
ult part of this task is to
all the fun
tion re
ursively. The following might be usefulas a part of the solution:fun {$ Fun
tion Argument} {Fun
tion Argument Fun
tion} endEND OF EXAM

Page 8 of 8

