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Solutions

Problem 1 (10%)

Question 1a (50%)

Answer. Map is defined as a function that takes two arguments, a list of n arguments and a
one-parameter function, and returns a list of the results of an application of that function to the
elements of the list:

{Map [e1 e2 . . . en] f} 7→ [f(e1) f(e2) . . . f(en)]

A correct definition of Map shown in Fig. 1; it uses recursion, and is perhaps the most intuitive.

fun {Map List Function}

case List of

Head|Tail then

{Function Head}|{Map Tail Function}

[] nil then

nil

end

end

Figure 1: A recursive definition of Map.

Discussion. The order of patterns in the definition above may be inversed with no influence
on the correctness, while possibly slowing down the process of mapping over longer lists—two
patterns rather than one are matched at each recursive step (except for the final step).

Map can also be defined in terms of the the procedure FoldR, as in Fig. 2.

Map can also be defined as in Fig. 3, using an accumulator, so that the process of mapping is
iterative (but the use of Reverse spoils the gain in efficiency).

∗Contact info: {waku,edsberg}(at)idi.ntnu.no
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fun {Map List Function}

{FoldR List

fun {$ Element Rest} {Function Element}|Rest end

nil}

end

Figure 2: A definition of Map in terms of FoldR.

fun {Map List Function}

fun {ReverseMap List Accumulator}

case List of

Head|Tail then

{ReverseMap Tail {Function Head}|Accumulator}

[] nil then

Accumulator

end

end

in

{Reverse {ReverseMap List nil}}

% alternatively {ReverseMap {Reverse List} nil}

end

Figure 3: A definition of Map using an accumulator.

Question 1b (50%)

Answer. The order in which Map applies Function to the elements of List has no influence
on the order of the values in the list returned by Map, but it may have influence on those values
themselves. In a declarative model of computation, the value of an application of a function
to a particular input must be the same on every execution, and so Map will always return the
same result, given a particular input. In a non-declarative model of computation, Map may return
different results in different calls, even if given the same input, since the function it applies to the
elements of a list may give different results on different executions.

Discussion. Following the first definition above (answer to Question 1a), Map applies Function
to the elements of List in the left-to-right order, i.e., first to the first element of the list, then
to the second element of the list, and so on. This order can be easily reversed to be right-to-left,
as in Fig. 2. Nevertheless, for a given input [e1 e2 . . . en] and f , the returned list is always
[f(e1) f(e2) . . . f(en)]—the order of applications of f has no influence on the order of the
results. (All these variants are correct wrt. to the specification in Question 1a.) But the order of
application of f may have influence on the values f(ei), e.g., when explicit state (or other side
effects) is used, or when both threads and exceptions are allowed—that is, when the model of
computation is non-declarative. Given the definitions shown in Fig. 4, we observe that:

• the expression {Map [1 2 3] F1} == {Map [1 2 3] F1} will always evaluate to false;
• the expression {Map [1 2 3] F2} == {Map [1 2 3] F2} will likely evaluate to false on

most executions.
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F1 = local State in

State = {NewCell 0}

fun {$ Argument}

State := @State + 1

Argument * @State

end

end

fun {F2 Argument}

{OS.rand}

end

Figure 4: Two non-declarative functions.

Problem 2 (10%)

Question 2a (50%)

Answer. The apparently random sequence 3, 45, 8, 12, . . . may have been observed only if the
hidden code was as in the alternatives 5 and 6 (though it is highly unlikely that we would actually
observe such a sequence).

Discussion. See below.

Question 2b (50%)

Answer. The strictly increasing sequence 1, 2, 3, . . . can be guaranteed only by the code in the
alternative 2.

Discussion. The observed output apparently does not correspond to the order of elements in the
stream. Producer generates an endless stream [p1 p2 . . . ] of no-parameter (nullary) procedures,
such that each procedure pi, when applied to no arguments, prints (displays) its number, i, in the
browser window. That is, for any natural number i > 0, {pi} is guaranteed to print i.

The stream is infinite: Producer calls itself recursively, and there is no stop condition in its defini-
tion. In the hidden code, for the call {Consume Numbers} to be reached the call {Produce Numbers}

must therefore be run in a separate thread. If the call {Produce Numbers} is not enclosed
in a thread ... end statement, there will be no output in the browser window. Whether
{Consume Numbers} is enclosed in a thread ... end statement or not, has no practical meaning
in this case. (However, if two {Consume Numbers} calls are present, then the first one must be
run in a new thread for the other to be reachable.)

When the (a) consumer executes the call {Head}, further execution of the consumer is stopped
until {Head} returns. If the {Display Number} call executed within {Head} does not start a new
thread, Consumer can proceed only when {Display Number}, and thus {Head}, has returned (i.e.,
only when Number has already been displayed). Therefeore, if Display starts a thread, then the
output is likely to be a sequence of numbers displayed in the order in which the scheduler choses
particular Display-threads. If Display does not start a new thread, the sequence is guaranteed
to be strictly increasing (in the case of one consumer thread). If more consuments are running,
each of them outputs an increasing sequence of numbers, but ther outputs are interleaved, and so
that smaller numbers may follow larger numbers, but the output can never start with 3 (the first
number in the output is the first number output by the first consumer chosen by the scheduler,
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and it must be 1).

The six alternative pieces of hidden code would give the following behaviour:

1. No output ({Consume Numbers} is unreachable).

2. The sequence 1, 2, 3, . . . (guaranteed by unthreaded Display).1

3. A sequence such as 1, 2, 1, 3, . . . , where each number occurs twice,2 and a number n
output by one of the consumers can never precede any number m < n output by the same
consumer.3

4. No output ({Consume Numbers} is unreachable).

5. A more or less random sequence, with each number occurring once (cf. footnote 2), and with
larger numbers more likely to appear later in the sequence.

6. As above, but with each number occurring twice.

Note: The delay between the production of two consecutive elements of Numbers is 100 ms, while
the delay between the execution of a {Display Number} and the actual printing of Number is
0–1000 ms. It is therefore highly unlikely that 45 would appear as second in the output sequence.
(With a fair scheduler, by the time the 45th element of Numbers is generated at least 35 numbers
should have already been displayed.) However, {Delay n} suspends the current thread for n ms,
but the thread may remain suspended for an arbitrarily longer time. It is not impossible that
45 appears as second in the output (in the case of the threaded Display). (If your answer to
Question 2a is that it is impossible to observe such a sequence, it is considered correct, provided
that you gave an appropriate argumentation.)

Problem 3 (20%)

Question 3a (50%)

Answer. Function can be implemented using higher-order programming, with or without ex-
plicit state, as in Fig. 5.

Discussion. Since the result of a call {Function a1} must be applicable to another single
argument, e.g., as in the call {{Function a1} a2}, Function, when applied to an argument,
must return a one-parameter (unary) function. Furthermore, the result of {{Function a1} a2}

must again be applicable to a single argument, i.e., it must again be a unary function. In general,
the result of a call {. . .{{Function a1} a2} . . . an} must be a unary function, for any n > 0; let
us denote it by fn. Then {fn an+1} prints an in the browser window, and returns fn+1, which
follows the specification above. Furthermore, there is no a0 to be printed by f1. There is no
requirement that fi = fj for all i, j.

In the first solution, the first call to Function, {Function a1}, does not display anything, but
returns a new function, f2. In all subsequent calls {fi ai}, i > 1, the function fi will display
ai−1 and return a new function, fi+1. The one-call delay in printing is realized by each fi having

1The sequence is such that if the number n is printed, then every number m < n must have already been printed

exactly once, and no number m > n can have been printed yet.
2If we could wait infinitely, we would see all natural numbers printed, each exactly twice.
3We are guaranteed that when the number n is printed, then each number m < n must have already been

printed at least once; if the number n has been printed twice, then every number m < n must have already been

printed twice.
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% without explicit state

fun {Function Argument}

fun {$ NextArgument}

{Browse Argument}

{Function NextArgument}

end

end

% with explicit state

fun {Function Argument}

State = {NewCell Argument}

fun {Function Argument}

{Browse {Exchange State $ Argument}}

Function

end

in

Function

end

Figure 5: Definitions of Function using higher-order programming and explicit state.

the argument ai−1 of the preceding call to fi−1 in its closure. Note: At each step i, fi is a new
function, i.e., fi 6= fj for any i 6= j, while Function (f1) does not change (it is stateless).

In the second solution, a cell is used to keep the argument of a call to be printed in the next call.
In the first call to Function, {Function a1}, a cell, c, is created with a1 as its content, and a
new function, f2, that has c in its closure is returned. There is no printout at this step. In every
subsequent call {fi ai}, the content of c, i.e., ai−1, is printed and replaced by the next argument,
ai. Note: At each step i, fi is the same stateful function f2 (i.e., fi = fj for any i, j > 1), though
each time with a new content of the cell c (i.e., the content of c as seen by fi is not necessarily
the same value as that seen by fj , for any i 6= j). Function (f1) does not change (it is stateless).

An alternative solution using explicit state is given in Fig. 6. The disadvantage is that i) the cell
is external to Function, and thus its content can be changed without making a call to Function;
ii) a particular value, e.g., nil, must be used to initially fill the cell, and this value cannot then be
used as an argument to Function (it would not be displayed in the next call); iii) if an unbound
variable is passed to Function, the process suspends; iv) a call to Function will not display the
argument only on the first occasion, otherwise Function will always display a value (see Fig. 6;
the version with explicit state as in Fig. 5 creates a new state cell on each call). (Nevertheless,
this solution is considered correct.)

Question 3b (50%)

Answer. Apply can be implemented as in Fig. 7.

Discussion. Apply is not the same as Map. While Map takes as arguments a list and a unary
function and returns a list of the results of application of the function to each element of the list,
Apply takes as arguments a list and a unary function4 and returns a function. This can be clearly
seen in the example call {Apply {Apply Function [1 2 3]]} [4 5]}, where the return value of
the inner call {Apply Function [1 2 3]} is Apply-ed to [4 5] in the outer call. Furthermore,
Apply must iteratively (or recursively, see Fig. 8) perform a sequence of nested applications,

4The order of arguments of Apply is actually the inverse, but this plays here no role.
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State = {NewCell nil}

fun {Function Argument}

if @State \= nil then {Browse @State} end

State := Argument

Function

end

% undesirable behaviour

{{Function nil} 2} % -> no printout

{{Function 1} 2} % -> displays 1

{{Function 1} 2} % -> displays 2, 1

Figure 6: An alternative definiton of a stateful Function.

fun {Apply Function Arguments}

case Arguments of

Head|Tail then

{Apply {Function Head} Tail}

[] nil then

Function

end

end

Figure 7: A definition of Apply with iterative behaviour

rather than a sequence of independent applications. The call {Apply Function [1 2 3]} must
give the same output as the call {{{Function 1} 2} 3}, rather than as the sequence of calls
{Function 1} {Function 2} {Function 3}.

The definition above implements an iterative process. It is also possible to implement a recursive
process—see Fig. 8. It is much less effective: The stack grows linearly with the depth of recursion,
and it is necessary to first reverse the list of arguments (a recursive process, again). (This definition
was considered correct.)

fun {Apply Function Arguments}

fun {Apply Function ReversedArguments}

case ReversedArguments of

Head|Tail then

{{Apply Function Tail} Head}

[] nil then

Function

end

end

in

{Apply Function {Reverse Arguments}}

end

Figure 8: A definition of Apply with recursive behaviour.
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Problem 4 (20%)

Question 4a (40%)

Answer. The data structures for representing cards, hands, and decks may be defined as in
Fig. 9.

〈deck〉 ::= [ {〈card〉i} ]

〈hand〉 ::= [ 〈card〉1 〈card〉2 〈card〉3 〈card〉4 〈card〉5 ]

〈card〉 ::= card(suit:〈suit〉 rank:〈rank〉)

〈suit〉 ::= heart | diamond | spade | club

〈rank〉 ::= ace | two | . . . | ten | jack | queen | king

Additional conditions:

1. In 〈deck〉, 0 < i ≤ n is a subscript, where 0 < n ≤ 52 is the count of cards in a
deck; 〈card〉i appears exactly once for each i; 〈card〉i 6= 〈card〉j for any i 6= j.

2. In 〈hand〉, 〈card〉i 6= 〈card〉j for any i 6= j.

Figure 9: Syntax for representing cards, hands, and decks, in EBNF. Subscripts are used to
distinguish between different occurences of the same nonterminal on the right-hand side of a
production rule. Additional conditions are needed since the syntax cannot be completely specified
by a context-free grammar. In the rule for 〈rank〉, ellipsis (‘. . . ’) is not a part of the syntax, its
meaning is that some terminals to which 〈rank〉 may evaluate are not visible.

Discussion. A data structure is an object that stores data. In programming, the definition of a
data structure involves (roughly) three elements: i) definition of the behaviour of the data structure
as an abstract data type (ADT); ii) representation, in a particular language, of the ADT in terms
of the data structres already available in that language, or implementation of the ADT as a new
structre (requires recompiling of the language’s interpreter/compiler); iii) (optional) definition of
a special syntax, for convenient coding. Strictly speaking, BNF (and EBNF) is used to specify
the syntax of programs valid in a programming language, but not to specify the data structures
as objects. We can specify, as part of the syntax, how data structures are to be represented in the
code, but it does not specify their internal layout.

In Question 4a, you were asked to define data structures using BNF/EBNF; this (over)simplification
was made to reduce the amount of your work, under the assumption that using a particular Oz
syntax you will think of the underlying data structures, such as lists and records. For complete-
ness, here we will follow all three steps mentioned above, though we will not discuss operations
on the defined ADTs.

A card can be abstractly represented as a pair of a suit and a rank:

card = 〈suit , rank〉

where suit is an instance of the type Suit = {heart, diamond, spade, club}, rank is an instance
of the type Rank = {ace, two, . . . , ten, jack, queen, king}, card is an instance of the type Card =
{〈suit , rank〉 | suit ∈ Suit , rank ∈ Rank}, and heart, ace, etc., are distinct objects. (Here we define
types extensionally, i.e., by means of listing all their instances, and use the symbol ‘∈’ to denote
that an object is an instance of a particular type.)
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An n-card deck can be represented as a set of n cards:

deck = {card1, card2, . . . , cardn}

Note that if a deck is represented as a set rather than as a tuple, it is guaranteed not to include
the same card twice. A 5-card hand can be represented in the same way. (A hand is actually a
deck of a particular size.)

To implement this in Oz, we may use records, tuples (which are records), lists (which are nested
records), literals, numbers, names, etc. Here, we make this particular choice:

1. Decks and hands are implemented as lists of cards.
2. Cards are represented as records labelled ‘card’, with two features labelled ‘suit’ and ‘rank’,

with the values of the corresponding fields being a suit and a rank, respectively.
3. Suits are represented as the literals ‘heart’, ‘diamond’, ‘spade’, ‘club’.
4. Ranks are represented as the literals ‘ace’, ‘two’, . . . , ‘ten’, ‘jack’, ‘queen’, ‘king’.

In an Oz program, a representation of these structures and elements might follow the syntax given
in Fig. 9.

We might decide to introduce a completely new syntax:

〈deck〉 ::= deck {〈card〉i} end

〈hand〉 ::= hand {〈card〉i} end

〈card〉 ::= card 〈suit〉 〈rank〉 end

with suits and ranks as before. We would need to define the semantics of these new syntactic
constructs, and perhaps recompile the language with new basic data structures.

Question 4b (60%)

Answer. The function CountHands may be implemented as in Fig. 10.

fun {CountHands Deck HandType}

{Length {Filter {SolveAll fun {$} {Hand Deck} end}

fun {$ Hand} {HandType Hand} end}}

end

Figure 10: An implementation of CountHands.

Discussion. To count hands of a particular type that can be drawn from a particular deck,
we employ the following generate-and-test algorithm: i) generate a list of all hands that can be
drawn from the deck; ii) remove from this list those hands that are not of the demanded type;
iii) return the count of the remaining elements. To do this, we need a function that generates a list
of possible hands, given a deck. Question 4b explicitly requires us to use the relational model, and
we realize this by implementing a function Hand that nondeterministically picks one hand from
the given deck. SolveAll is then used to return a list of all solutions, i.e., a list of all possible
hands, given a deck. This list is then filtered using Filter and HandType (Filter is a built-in in
Oz, but may be easily implemented, as in Fig. 11). Finally, Length is applied to return the length
of the filtered list.

An implementation generating all possible hands form a deck must take care of the following
conditions: i) no hand contains the same card twice; ii) if a hand is represented as a list of cards,
then those lists of cards that are permutations of each other are effectively representations of the
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fun {Filter List Predicate}

case List of Head|Tail then

if {Predicate Head} then Head|{Filter Tail Predicate}

else {Filter Tail Predicate} end

else nil end

end

Figure 11: An implementation of Filter.

same hand; iii) no hand should be represented twice in a list of hands. Given a deck of n cards,
we can realize these requirements using several different strategies:

1. Generate all possible combinations of 5 cards drawn separately from the deck (with repeti-
tions, i.e., each card is drawn independently from a full deck), and then filter out all hands
containing a particular card more than once, and remove redundant representations of the
same hand.

2. Generate all possible combinations of 5 cards drawn sequentially from the deck (without
repetitions, i.e., when a card is drawn, it is drawn from a deck that contains all cards of the
original deck except for those already drawn), and then remove redundant representations
of the same hand.

3. Generate only non-redundant, non-repetitive combinations of 5 cards from the deck.

Observe that there is a huge difference in how these algorithms consume time and space. From a
deck of n cards, the first will generate n5 hands (you pick 1 out of n cards, then you pick another
1 card out of n, and so on). The second will generate n!/(n − 5)! hands (you pick 1 out of n
cards, then another out of n− 1 cards, and so on). The last will generate n!/5!(n− 5)! cards (see
Fig. 13 for how it can be done). For a deck of 52 cards, these numbers are 380204032, 311875200,
and 2598960, respectively. Furthermore, in the first and second cases you need to go through
the whole list, making a number of tests and comparisons, to filter out incorrect and redundant
representations of hands.

Figure 12 shows a function Hand that implements the third strategy. (Implementations of the first
and the second were not uncommon in your solutions. They were not considered incorrect, unless
you forgot to address redundancy.) Hand nondeterministically picks five cards from one deck. Note
that it is guaranteed that no card will appear more than once in a hand, and that a particular set
of cards will be represented by exactly one permutation, without any testing and filtering.

fun {Hand Deck}

fun {Pick N List}

case List of Head|Tail then

choice

Head|{Pick N-1 Tail}

[] {Pick N Tail} end

else N=0 nil end

end

in

{Pick 5 Deck}

end

Figure 12: A nondeterministic implementation of Hand.

Figure 13 shows how the rest of the solution may be implemented. To generate a full 52-card
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deck, call FullDeck = {SolveAll Card}. To calculate how many hands of the type flush5 can be
drawn from the full deck, you should call Count = {CountHands FullDeck Flush} (do not even
try). Figure 14 shows how Flush can be implemented within this framework.

fun {Card}

card(suit:{Suit} rank:{Rank})

end

fun {Suit}

choice heart [] diamond [] spade [] club end

end

fun {Rank}

choice

ace [] two [] three [] four [] five [] six [] seven [] eight

[] nine [] ten [] jack [] queen [] king end

end

Figure 13: Support code for CountHands.

fun {Flush Hand}

case {Suits Hand}

of [Suit Suit Suit Suit Suit] then true

else false end

end

fun {Suits Hand}

{Map Hand

fun {$ Card}

case Card of card(suit:Suit rank:_)

then Suit end

end}

end

Figure 14: An implementation of Flush.

Problem 5 (20%)

Question 5a (20%)

Answer. No, the specifications do not guarantee that the end of a stream associated to a port
can never be extended (bound) otherwise than by applying Send to the port.

Discussion. The stream cannot be extended directly by binding its tail, since its tail (s in
the specifications) is a variable bound to a read-only view of an unbound variable (s′ in the
specifications) visible only to the port. However, the specifications do not guarantee that the port
cannot be asked to bind s′ (and thus changing the content visible through s). The specifications
do not specify the port’s internal structure either, so that there is no guarantee that the ‘hidden’
variable s′ is actually hidden.

5Flush is a hand containing five cards of any rank, but all of the same suit.
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The expression ‘p is a port associated with s’ is underspcecified: It makes no claim about the
nature of this association. In fact, a port can be represented as a record with the unbound
variable s′ as one of its fields (some of you have proposed such a solution, contrarily to the code
template of Question 5c), making this variable directly accessible from outside of the port. In Oz,
ports are implemented in a way that guarantees that only {Send p} can be used to extend the
stream of the port p, but this is an implementational detail not given in the specifications above.
Figure 15 shows an implementation of ports that strictly follows the specifications, yet does not
guarantee security of the stream. (The answer ‘yes’ was considered correct provided that you gave
a sufficient argumentation based on the fact that the end of a port’s stream is a read-only view.)

Question 5b (20%)

Answer. Ports can be implemented in the sequential and concurrent models with explicit state,
but not in the declarative models, whether with or without concurrency.

Discussion. To implement ports following the specifications, we clearly need i) dataflow vari-
ables, ii) read-only views, iii) records (tuples). Furthermore, since a port is an object that changes
its state (the unbound variable read-only visible at the end of the associated stream) while keep-
ing its identity, we need explicit state. To implement ports, concurrency (threads) is not needed.
Ports are of no use in a sequential model, but they are implementable in such a model. (We can
trivially implement ports in terms of ports, but pre-defined ports are not necessary to implement
ports.)

Dataflow variables are an essential part of every version of the kernel language. Read-only views
are introduced in Sec. 3.7.5 of the pensum book as a part of the sequential declarative kernel
language. (An answer in which you argued that read-only views are not a constitutive part of
the kernel language and thus ports are not implementable according to the specifications was also
considered correct.) Records are an essential part of every version of the kernel language. Eksplicit
state is present only in non-declarative versions of the kernel language. Therefore, ports:

• cannot be implemented in the sequential declarative kernel language, since it lacks expres-
sivity for explicit state;

• cannot be implemented in the concurrent declarative kernel language, for the same reason
(threads are of no help);

• can be implemented in the sequential kernel language with explicit state (the lack of threads
is no obstacle);

• can be implemented in the concurrent kernel language with explicit state (the shared-state
concurrency model), since it is an extension of the one listed immediately above.

Question 5c (40%)

Answer. Ports can be implemented, e.g., as in Fig. 15.

Discussion. A port needs explicit state to keep trace of the shifting end of the associated stream.
This is realized by means of the cell EndPointer. When a new port is created, a new cell is made
and initialized with an unbound variable. Then the stream to be associated with the port, which
must initially be an unbound variable, becomes bound to a read-only view of the content of the
port’s cell. The cell is visible only inside the procedure Send defined within NewPort (the cell is
inside the procedure’s closure). A port is then represented as a record with one field called send

whose value is the procedure Send.

When the value of the send field of a port is applied to any object, Message, (including an unbound
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proc {NewPort Stream Port}

proc {Send Message}

HiddenEnd

in

{Exchange EndPointer $ HiddenEnd}

= Message|!!HiddenEnd

end

EndPointer = {NewCell _}

in

Stream = !!@EndPointer

Port = port(send:Send)

end

proc {Send Port Message}

{Port.send Message}

end

Figure 15: An implementation of ports.

variable), a new unbound variable, HiddenEnd, is created, and the unbound variable kept inside the
cell EndPointer is bound to a new tuple made of Message and a read-only view of HiddenEnd and
named |, thus extending the stream. The content of EndPointer is then replaced by HiddenEnd,
so that the port is able to extend the stream again.

The procedure Send is defined so that when it is applied to a port and a message, it simply
forwards the message to the port’s Send, i.e., it calls the port’s internal procedure Send accessible
through the port’s field send.

(The picture is somewhat more complicated when you consider the semantics of read-only views,
but this has no practical influence on how the implementation presented here works. As an
exercise, you may study the details on your own.)

Question 5d (20%)

Answer. No, the implementation given in the answer to Question 5c does not guarantee this
security.

Discussion. The question was fomulated as follows: ‘Does the implementation guarantee that
the stream associated to a port can never be extended in any way other than by applying Send

to the port?’ The (global) procedure Send is defined in terms of the (internal) procedure Send

of the port passed to the former as an argument. These are two distinct procedures, and only
the former can be applied to a port (and a message). The question was thus about the global
Send. Observe that any procedure defined in the same way as the global Send is able to send a
message to a port without calling the global Send. In fact, it is not even necessary to define such
a procedure, as the port’s send can be used directly, as illustrated in Fig. 16. Note also that in
this simple program several messages are sent to a single port without the use of threads (Browse
does start a separate thread, but we use it only for the purpose of visualization, to convince you
that the program works in a sequential model; it is not a part of the program).

Since the implementation follows the specifications, and it does not guarantee that applying Send

to a port is the only way to extend the port’s stream, it is clear the the specifications cannot
guarantee this either—otherwise there would be a contradiction. (Some of you answered ‘yes’
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proc {AlternativeSend Port Message}

{Port.send Message}

end

Stream

Port = {NewPort _}

{AlternativeSend Port hello}

{proc {$ Port} {Port.send hello} end Port}

{Port.send hello}

{Browse Stream}

% displays: hello|hello|hello|!!_

Figure 16: An example of sending to a port without the use of Send.

to Question 5a and ‘no’ to Question 5d, without discussing this apparent clash.) We could, still
fulfilling the specifications, implement ports so that NewPort binds Port not to port(send:Send),
but rather to port(send:Send end:EndPointer) (as some of you did, despite the template),
making it possible to extend the stream even without using the port’s internal Send.

To secure ports, some of you suggested to use names and the wrapper/unwrapper approach of
Sec. 3.7.5 of the pensum book. Figure 17 shows an implementation of ports that guarantees that
only an appplication of the global Send to a port can send a message to the port (and thus extend
its stream). To send a message to a port, the port’s SecureSend has to be passed a message and
a key. The key must be identical to the unique name hidden inside the port; if it is, the message
is sent in the same way as in the implementation in Fig. 15. If the key is not correct, the port
ignores the call (you may prefer it to raise an exception).

When a port is created, it calls Send with its own key as the message. Send, when called with a
new port (a port it has never seen before),6 registers this port in a dictionary, where the port is
the index, and the port’s key (passed to Send as Message) is the value; Send does not send any
message to the port at that time. When Send is passed an already registered port, it retrieves the
port’s key from the dictionary and uses it in a call to the port’s SecureSend. Note that, according
to the semantics of Oz, it is impossible to compromise this solution: A port’s name is visible only
to the port (which has no way to report it), and to Send which keeps it in a dictionary visible only
to Send itself (and has no way to report it).

Problem 6 (20%)

Question 6a (70%)

Answer. Figure 18 shows how the syntax validator for the given grammar can be implemented
using relational programming.

Discussion. The syntax validator takes a list of tokens (Tokens) and tries to parse from it a
valid program, so that no tokens are left. It calls the procedure ParseProgram that parses a
valid program from Tokens, returning (in the parameter Rest) the rest of the tokens that remain
after the program has been parsed. If ParseProgram cannot parse a valid program, it fails. If
it does not fail, the anonymous function passed to SolveAll in ValidateSyntax returns true.

6Send knows that it has not seen a port before from that there is no entry for this port in its dictionary; we can

safely make the dictionary return nil in case it finds no entry, since the key to a port must be a name, and thus

nil can never be a key to a port.
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proc {NewPort Stream Port}

proc {SecureSend Message Key}

if Key == HiddenKey then HiddenEnd in

{Exchange EndPointer $ HiddenEnd}

= Message|!!HiddenEnd end

end

EndPointer = {NewCell _}

HiddenKey = {NewName}

in

Port = port(send:SecureSend)

{Send Port HiddenKey}

end

Send = local Keys in

Keys = {NewDictionary}

proc {$ Port Message}

Key == {Keys.get Port} in

if Key == nil then {Keys.put Port Message}

else {Port.send Message Key} end

end

end

Figure 17: An implementation of secure ports using names and stateful dictionaries (described in
Sec. 6.5.1 of the pensum book).

SolveAll returns a list of as many trues as there are possible derivations of a valid program from
Tokens. If this list is empty, the list of tokens does not correspond to any valid program, and
ValidateSyntax returns false. Otherwise, it returns true.

ParseProgram tests whether it is possible to parse from its input an expression enclosed between
{ and Browse on the left and } on the right, according to the grammar. It calls ParseExpression
to actually parse the expression. ParseExpression nondeterministically tries to parse its input
according to one of the rules specified by the grammar; for each rule, it calls a procedure dedicated
to this rule. These procedures are shown in Fig. Question 6a; all of them are based on the principles
of relational programming. (Question 6a did not require you to use the relational model.)

Question 6b (30%)

Figure 20 shows a valid program in f that computes and displays the number 1000! Observe
that in f there is no way to define a named function: Neither fun {Factorial N} ... end

nor Factorial = fun {$ N} ... end are syntactically valid. A function only becomes (locally)
named if it is passed as an argument to another function. The way of programming shown in
Fig. 20 is sometimes called the ‘continuation-passing programming style’.
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fun {ValidateSyntax Tokens}

{SolveAll fun {$}

{ParseProgram Tokens nil} true end}

\= nil

end

proc {ParseProgram Tokens Rest}

Expression in

Tokens = ’{’|ident(’Browse’)|Expression

{ParseExpression Expression ’}’|Rest}

end

proc {ParseExpression Tokens Rest}

choice

{ParseApplication Tokens Rest}

[] {ParseFunction Tokens Rest}

[] {ParseIf Tokens Rest}

[] {ParseOperation Tokens Rest}

[] {ParseIdentifier Tokens Rest}

[] {ParseInteger Tokens Rest}

end

end

Figure 18: An implementation of ValidateSyntax using relational programming.
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proc {ParseApplication Tokens Rest}

Expression Expressions in

Tokens = ’{’|Expression

{ParseExpression Expression Expressions}

{ParseExpressions Expressions ’}’|Rest}

end

proc {ParseExpressions Tokens Rest}

Expression Expressions in

Tokens = Expression|Expressions

choice

{ParseExpression Expression nil}

{ParseExpressions Expressions Rest}

[] Rest = Expressions

end

end

proc {ParseFunction Tokens Rest}

Identifier Identifiers Expression in

Tokens = ’fun’|’{’|’$’|Identifier

{ParseIdentifier Identifier Identifiers}

{ParseIdentifiers Identifiers ’}’|Expression}

{ParseExpression Expression ’end’|Rest}

end

proc {ParseIf Tokens Rest}

Identifier Condition Consequent Alternative in

Tokens = ’if’|Identifier

{ParseIdentifier Identifier ’==’|Condition}

{ParseExpression Condition ’then’|Consequent}

{ParseExpression Consequent ’else’|Alternative}

{ParseExpression Alternative ’end’|Rest}

end

proc {ParseOperation Tokens Rest}

Operator Expression in

{ParseIdentifier Tokens Operator|Expression}

Operator = choice ’*’ [] ’-’ end

{ParseExpression Expression Rest}

end

proc {ParseIdentifiers Tokens Rest}

Identifier Identifiers in

choice

Tokens = Identifier|Identifiers

{ParseIdentifier [Identifier] nil}

{ParseIdentifiers Identifiers Rest}

[] Rest = Tokens

end

end

Figure 19: Definitions supporting the implementation of a syntax validator given in Fig. 18.
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proc {ParseIdentifier Tokens Rest}

Tokens = ident(_)|Rest

end

proc {ParseInteger Tokens Rest}

Tokens = int(_)|Rest

end

Figure 19 (contd): Definitions supporting the implementation of a syntax validator given in Fig. 18.

{Browse

{fun {$ Function Argument}

{Function Argument Function}

end

fun {$ N Factorial}

if N==0 then 1

else N*{Factorial N-1 Factorial}

end

end

1000}}

Figure 20: An implementation of the computation of 1000! in f.
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