
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

Exam in TDT4165
Programming Languages

(with solutions)
Tuesday, October 16., 2007, 12:00–14:00

Questions and Answers

Question 1

Consider the following grammar for a simple programming language:

〈program〉 ::= 〈statements〉
〈statements〉 ::= 〈statement〉

| 〈statement〉 〈statements〉
〈statement〉 ::= 〈assignment〉

| 〈loop〉
| 〈io〉

〈assignment〉 ::= 〈identifier〉 : 〈expression〉 .
〈loop〉 ::= loop 〈identifier〉 { 〈statement〉 } .

〈io〉 ::= in 〈identifier〉 .
| out 〈identifier〉 .

〈identifier〉 ::= [A-Za-z]+

〈expression〉 ::= 〈additive expression〉
| 〈multiplicative expression〉
| 〈identifier〉

〈additive expression〉 ::= 〈expression〉 + 〈expression〉
| 〈expression〉 - 〈expression〉

〈multiplicative expression〉 ::= 〈expression〉 * 〈expression〉
| 〈expression〉 / 〈expression〉

The definition of the nonterminal 〈identifier〉 is a regular expression that matches one or more letters not
separated by any non-letter character. (This has no importance for the question.)

Which of the following is correct:

1. The grammar is ambiguous and left-recursive.

2. The grammar is ambiguous but not left-recursive.

3. The grammar is left recursive but not ambiguous.

4. The grammar is neither ambiguous nor left-recursive.

1/10

Answer: 1.

A grammar is ambiguous if it is possible to construct a sentence that is valid according to the grammar and

that has more than one leftmost (or rightmost) derivation (more than one parse tree). The grammar above is

ambiguous because of the definition of expressions. For example, a syntactically valid program including the
code A + B * C would have at least two parse trees, in which the expression would be parsed differently:

+(A, *(B,C)), or

*(+(A,C), D).

A grammar is left recursive if there is a nonterminal for which it is possible to make a replacement with that

same nonterminal as the left-most symbol. That is, there is a nonterminal N for which there is a sequence
of rules allowing to replace N with Nα, with α any sequence of terminals and nonterminals. The grammar

above is (indirectly) left-recursive because of the definition of expressions. The nonterminal 〈expression〉 can

be replaced with the sequence 〈expression〉 + 〈expression〉, for example, where 〈expression〉 is the left-most
nonterminal.

Question 2

Consider the following two pieces of code:

A. loop Index {

in Input .

Output : Input + Index .

out Output .

} .

B. in Input .

loop Input { Output : Output + 1 . } .

out Output .

Whitespace is added for readability; assume that the amount and type of whitespace between lexemes
(tokens) has no importance for the validity of a piece of code.

Given the grammar from Question 1, which of the following is true:

1. According to the grammar, A is syntactically valid but B is not.

2. According to the grammar, B is syntactically valid but A is not.

3. According to the grammar, both A and B are syntactically valid.

4. According to the grammar, neither A nor B are syntactically valid.

Answer: 4.

While reasoning about the validity of a sequence of tokens with respect to a formal grammar, you should use

no additional assumptions, but rather follow the grammar in a machine-like manner.

A is not valid because a loop statement can contain only one nested statement; this is clear from the definition

of 〈loop〉 and 〈statement〉.

B is not valid because the grammar does not allow to parse numerals; there is no rule which allow you to

parse (or generate) sentences including the symbol 1, and thus any sequence of tokens including that symbol

is not a valid sentence according to the grammar above.

2/10

Question 3

Consider the following mathematical definition of Fibonacci numbers:

Fibonaccin =

{

1, if n < 2

Fibonaccin−1 + Fibonaccin−2, otherwise

The following code shows one possibility of implementing this definition in Haskell:

fib n | n < 2 = 1

| otherwise = fib (n - 1) + fib (n - 2)

Given that Haskell is a programming language with lazy evaluation, which of the following is true:

1. The implementation above is not recursive, even though the mathematical definition is recursive.

2. The implementation above is not tail-recursive because it is not possible to implement a tail-recursive

function in a language with lazy evaluation.

3. The implementation above is not tail-recursive irrespectively of the order of evaluation.

4. The implementation above is tail-recursive because of the lazy evaluation.

You do not need to know Haskell to answer correctly.

Answer: 3.

A function (procedure) is recursive if it calls itself inside its body. A function (procedure) is tail-recursive if
it calls itself in its own body (i.e., if it is recursive) and if there is just one recursive call which is the last

statement in the body.1

Question 4

Consider the following function:

fun {Switch Number Threshold Result Rescue}

if Number<Threshold then Result

else Rescue end

end

Suppose that Switch is applied as follows:

Result = {Switch N 5 {Fibonacci N} {Fibonacci 5}} +

{Switch 5 N {Fibonacci 5} {Fibonacci N}}

where Fibonacci is a function that given a number n returns the n-th Fibonacci number. You do not know

how Fibonacci is implemented, but assume that it computes Fibonacci numbers with runtime linear in

terms of the input, i.e., a computation of {Fibonacci 10} takes 10t, {Fibonacci 50} takes 50t, etc., for
some constant t.2

Assuming that the computation cost added by Switch is constant and negligible, which of the following is

true:

1True for direct recursion. Functions can also be indirectly recursive (and tail-recursive), if they do not call themselves, but call other
functions (procedures) that call the first again. Also, a tail-recursive procedure can actually include more than one call ti itself in the
body, provided that the calls are placed, e.g., in different branches of a conditional statement.

2The assumption is reasonable for an appropriate implementation and sufficiently small inputs.

3/10

1. For any input n, it is guaranteed that an execution of this code will take (10 + 2n)t, irrespectively of

how Fibonacci is implemented.

2. It is guaranteed that an execution of this code can’t take more than 10t, irrespectively of how Fibonacci

is implemented and of the input n.

3. It is guaranteed that an execution of this code can’t take more than 2nt, irrespectively of how Fibonacci

is implemented and of the input n.

4. None of the above.

(Note: n is the value of N.)

Answer: 4.

Fibonacci may be an eager or a lazy function.

• If Fibonacci is eager, both {Fibonacci 5} and {Fibonacci N} will be evaluated twice, with runtime

2(5+n)t. (If Fibonacciwere memoized, the runtime would rather be max(5t, nt), assuming constant-
time cost of memoization. However, if Fibonacciwere memoized, the computation of {Fibonacci n}

would take nt on the first occurrence, but constant time on every other occurrence, which does not

meet the specification above.)

• If Fibonacci is lazy, only one of {Fibonacci 5} and {Fibonacci N} will be evaluated (but necessarily

twice), with runtime 2×5t or 2nt, respectively. (If Fibonacciwere memoized, the runtime would be 5t

or nt, respectively.) Which of them will be evaluated depends on the value of n, and the computation

will never take more than 2 × 5t and 2nt, for any n.

Since it is not known how Fibonacci is implemented, none of the above can be guaranteed.

Question 5

Consider the following two definitions:

A. fun {Reverse List}

fun {Reverse List Accumulator}

Head|Tail = List in

{Reverse Tail Head|Accumulator}

end

in

{Reverse List nil}

end

B. fun {Reverse List}

case List of Head|Tail

then {Reverse Tail}|Head

else nil

end

Which of the following is true:

1. A defines constant-stack computation, but B defines linear-stack computation.

2. Both A and B define constant-stack computation.

3. Both A and B define linear-stack computation.

4. B defines constant-stack computation, but A defines linear-stack computation.

(Here ‘constant’ and ‘linear’ refer to the length of the input list.) Hint: translate these definitions into the

kernel language.

4/10

Answer: 2.

In Oz, an execution of a tail-recursive procedure (or function) leads to an iterative process, a computation

with constant stack size. A is explicitly tail-recursive. B seems non-tail-recursive, but its translation to the

kernel language is tail-recursive:

proc {Reverse List ?Result}

case List of Head|Tail then

local Rest in

Result = Rest|Head

{Reverse Rest}

end

else nil end

end

Note that even though A is not a correct implementation of Reverse and it will never return a correct result
(see below), for any input list there will be an actual linear-stack computation done before a unification

failure is met.

Question 6

Consider the two definitions of Reverse above. Which of the following is true:

1. A correctly computes the reverse of an input list, but B does not.

2. Both A and B correctly compute the reverse of an input list.

3. B correctly computes the reverse of an input list, but A does not.

4. Neither A nor B correctly compute the reverse of an input list.

(Here, ‘reverse’ means a list with the same elements as the original list, but in the opposite order, e.g.,

{Reverse [1 2 3]} == [3 2 1].)

Answer: 4.

A is an almost correct implementation, except for that it attempts to unify List with a record Head|Tail,

rather than match List against the pattern Head|Tail. When List is nil, this results in a unification failure.
Since every list is a sequence of nested records ending in the empty list nil, will Reverse fail with any input

list.

B is incorrect: except for the trivial case where the input is nil, it does not produce a list but rather a series

of head-nested records, each with an element of the input list in the tail. It will return a list if the input is a

nested list, but this still will not be the correct result:

{Reverse [1 2 3]} returns ((nil|3)|2)|1 rathen than [3 2 1];

{Reverse [[1] [2] [3]]} returns [[[nil 3] 2] 1] rather than [[3] [2] [1]].

5/10

Question 7

Consider the following program:

local

fun {MakeSender Message Stream}

proc {Send Stream} Rest in

Stream = Message|Rest

thread {Send Rest} end

end

in

sender(start:proc {$} {Send Stream} end)

end

fun {MakeReceiver Stream}

proc {Receive Stream}

case Stream of Message|Stream

then {Browse Message} {Receive Stream} end

end

in

receiver(start:proc {$} {Receive Stream} end)

end

Stream

[S1 S2 R] = [{MakeSender s1 Stream}

{MakeSender s2 Stream}

{MakeReceiver Stream}]

in

{R.start}

{S1.start}

{S2.start}

end

Which of the following is true about an execution of this program:

1. None of the answers below is correct.

2. The execution will crash due to a unification failure.

3. The execution will repeatedly print s1 and s2 in the browser window, in an apparently random order.

4. The execution will repeatedly print s1 in the browser window.

Answer: 1.

The receiver is started first, and freezes over the unbound variable Stream. Since the receiver runs in the
main thread, it suspends the whole program — none of the senders is started.

The situation would be different if the receiver were started in a separate thread, e.g.,

• if {R.start} were replaced with thread {R.start} end, or

• if receiver(start:proc {$} {Receive Stream} end) were replaced with

receiver(start:proc {$} thread {Receive Stream} end end), etc.

then both senders would have a chance to start. One of them would add an element to the stream, and the

other would cause a unification failure. The failure would stop the main thread, since the first sending of
each sender is performed in that thread. Depending on the scheduling, the following could happen:

6/10

• If the second sender causes the failure after the first has started a new thread, the first sender will keep

sending its message, which will be then printed by the receiver (running in a separate thread — see
the assumption above).

• If the second sender causes the failure before the first has started a new thread, the first sender will

stop as well (it still runs in the main thread). Only the first message will be displayed.

Question 8

Let us extend Oz with a new type of statement with the following syntax:

{Bound 〈id〉1 〈id〉2}

and the following semantics:

The semantic statement is:

({Bound 〈id〉1 〈id〉2}, E)

The execution rule is:.

• If E(〈id〉1) is a bound variable, then bind E(〈id〉2) to true.

• If E(〈id〉1) is an unbound variable, then bind E(〈id〉2) to false.

Consider the declarative sequential model of computation (DS), the declarative concurrent model with data-

driven computation (DCDta), and the declarative concurrent model with demand-driven computation (DC-

Dem). Which of the following is true:

1. Adding this statement type has no influence on the declarativeness of any of the models.

2. Adding this statement type will cause DCDta and DCDem, but not DS, to become non-declarative.

3. Adding this statement type will cause DS, DCDta, and DCDem to become non-declarative.

4. Adding this statement type will cause DS, but not DCDta and DCDem, to become non-declarative.

Answer: 2.

Adding this statement type has no influence on the declarativeness of the sequential model:

• Any program without any Bound statement will give the same result in DS and DS+Bound, and thus

DS+Bound must be declarative.

• Any program with a Bound statement will not be valid in DS, but will give the same result on any

execution in DS+Bound – if E(〈id〉1) is bound, then it is bound on any execution, and thus E(〈id〉2) is

true on every execution; analogously if E(〈id〉1) is unbound.

Adding this statement type to a declarative concurrent model (DCDta or DCDem) will cause the model to

become non-declarative. With Bound, it is possible to write a program that will give different results on
different executions. For example:

local X in

thread if {Bound X} then skip else X = 1 end

thread if {Bound X} then skip else X = 2 end

... % X is bound to 1 or 2 (or even unbound), depending on the schedulling

end

7/10

Question 9

C is a language with strict-order evaluation: expressions given as arguments in a function call are evaluated

before the resulting values are used in the function body. To simulate non-strict evaluation in which expres-

sions are not evaluated unless their values are needed, C progammers use macros. The following are two
ways of computing the cube of a number, one using a macro and one using a function:

...

#define cubem(a) a*a*a

long cubef(long a) {

return a*a*a;

}

...

For example, both cubem(2) and cubef(2) result in the number 8. If included in a program’s code, the

application cubem(〈expression〉) is replaced by the expression 〈expression〉*〈expression〉*〈expression〉:

...

long y = cubem(1234567);

...

is replaced by the code:

...

long y = 1234567*1234567*1234567;

...

Given that C is a language with strict evaluation, which of the following is true:

1. For any argument, an application of cubem will always return the same value as the application of
cubef.

2. For some arguments, an application of cubem will return the same value as an application of cubef, for

all other arguments at least one of the applications will fail (there will be an error condition reported

in some way).

3. For some arguments, an application of cubem will return the same value as an application of cubef, for
all other arguments the results will differ or at least one of the applications will fail.

4. None of the above statements is correct.

Consider only declarative programs, i.e., programs without side effects (e.g., changing the value of a vari-

able), so that ++x, x+=1, etc., are not valid arguments, but x, x+1, etc., are.

Answer: 3.

Arguments which are arithmetic expressions including operators other than * may lead to different results

of an evaluation of expressions involving cubem and cubef.

It is possible for both cubef and cubem to give the same result for some arguments, e.g.,

cubef(2) evaluates to 8, as cubem(2) does;

cubef(2*1) evaluates to 8, as cubem(2*1) does, etc.

8/10

It is possible for cubem and cubef to give different results for some arguments, e.g., cubef(1+1) evaluates

to 8 (because 1+1 is evaluated before it is passed to cubef), while cubem(1+1) evaluates to 4 (cubem(1+1)
is replaced with 1+1*1+1*1+1).

It is also possible that for some arguments one of or both of cubef and cubem will lead to a failure, e.g.,
due to type conversion error or value overflow, depending on the context and compilation. For exam-

ple, cubem(10000LL) will compute the cube of the number 10000 represented as a long long value, while

cubef(10000LL) will compute the cube of the number 10000 represented as a long value, which will either
give an incorrect value (since 100003 does not fit into a long) or result in a failure (if overflow detection is

turned on).

Note that this has no influence on which answer is correct.

Question 10

Most programming languages include facilities for reporting and recovering from abnormal conditions. Typi-

cally, they provide some form of the try-catch-finally statement type, where the content of the finally clause
is executed irrespectively of whether any statement inside the try clause raises an exception, and irrespec-

tively of whether such an exception is caught by the catch clause. For example, the following program:

try

{Browse raising(exception)}

raise exception end

catch Exception then

{Browse caught(Exception)}

finally

{Browse finalizing}

end

results in raising(exception), caught(exception), and finalizing displayed in the browser window.

Let us consider the Oz kernel language that provides the try-catch form, with no finally clause. Which of

the following is true:

1. It is impossible to achieve the effect of the full try-catch-finally statement directly in the kernel lan-

guage, and it is impossible to extend the kernel language to provide support for the finally clause.

2. It is impossible to achieve the effect of the full try-catch-finally statement directly in the kernel language
as it is defined, and thus it is impossible to define a practical language with the finally clause, unless

one modifies the kernel language itself.

3. It is impossible to achieve the effect of the full try-catch-finally statement directly in the kernel language

as it is defined, but it is possible to define a practical language by means of translation into the kernel
language, such that the practical language provides the finally clause.

4. It is possible to achieve the effect of the full try-catch-finally statement directly in the kernel language,

without the need for any extension of the syntax and semantics.

Answer: 4.

The try-catch-finally statement of the practical langauge:

try 〈statement〉try

catch 〈id〉exception then 〈statement〉catch

finally 〈statement〉finally

end

9/10

can be translated into the kernel language as:

local 〈id〉tag in

try

try 〈statement〉try catch 〈id〉exception then 〈statement〉catch end

〈id〉tag = clean

catch 〈id〉exception then 〈id〉tag = 〈id〉exception end

〈statement〉finally

if 〈id〉tag \= clean then raise 〈id〉tag end

end

Note: you were not required to know how this can be achieved. To answer this question correctly it was

enough to know that the kernel language does not include the finally keyword (this was explicit in the
text), that the practical language does allow for try-catch-finally statements, and that the practical language

is defined by means of translation to the kernel language without extending its expressivity. Since the

practical language has the same expressivity as the kernel language, the kernel language must be expressive
enough for the desired effect without additional syntactic or semantic extensions.

10/10

