
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

Exam in TDT4165
Programming Languges

(with solutions)
Monday, December 3., 2007

Prepared by: Wacek Kuśnierczyk

Reviewed by: Ole Edsberg

General Comments and Hints

Read the following general comments and the rest of the exam text before you begin to answer.

• Throughout the text, the acronym ‘CTMCP’ is used to refer to the pensum book (P. van Roy and S.

Haridi: Concepts, Techniques, and Models of Computer Programming. MIT Press, 2004).

• The exam is composed of 5 tasks, each task contains one or more questions. To achieve the maximal

score, you need to correctly answer all questions in all tasks. If you skip or answer incorrectly a
question, your score will be reduced correspondingly. Different tasks contribute differently to the total

score; see each task for details.

• All code examples are given in Oz. Where you are asked to write code, the code should be in Oz as

well.

• You answers should be concise, without text that is irrelevant or does not contribute to the answer.

• Each answer should include a brief explanation; rather than simply ‘yes’, you should answer ‘yes,
because . . . ’. Correct answers with no justification will score less than answers with justifications.

Incorrect answers with coherent explanations may still give you some points. You may also disagree

with what is stated in CTMCP or with what was explained during the lectures, but you should give
convincing arguments in such cases.

1/13

Task 1 (10 points)

Consider an execution of the following program:

local X Y Z in

X = Y

try

X = 1 Y = 2 Z = 3

catch Exception then

skip

end

{Browse X#Y#Z}

end

Question 1-1. Will there be any output printed in the browser window, and if yes, what will be displayed?

Question 1-2. Explain how the try-catch statement is executed on the abstract machine, and use this
explanation to justify your answer to Question 1-1. (You may provide a formal specification

of the abstract machine semantics for try-catch statements, but a clear free-text description
will be sufficient).

Solutions

Question 1-1. There will be output displayed in the browser window: 1#1#Z (or 1#1#_) will be displayed.

Question 1-2. For a detailed description of the try-catch statement, see Sec. 2.6 in CTMCP. In general,

if an exception is thrown, the stack corresponding to the current thread (there is just one

thread in the example above) is unwinded, and the first catch statement met is executed;
however, bindings in the single assignment store are not undone. Therefore, in the program

above, X becomes bound with Y, then X becomes bound to 1, then the unification failure

while trying to bind Y to 2 causes an exception to be thrown so that Z = 3 is not reached.
The exception is caught and processed (i.e., the skip statement is executed). X remains

bound to 1, Y to X, and Z remains unbound when the Browse statement is reached.

Task 2 (30 points)

Memoization is a technique used to improve the efficiency of programs. A memoized function remembers
the results of the computation for all those inputs it has already been called with earlier. When it is called

again with an input which it has already been called with earlier, the function returns the already computed

result from memory instead of calculating it anew.

Consider the function Fibonacci, implemented as follows:

fun {Fibonacci N}

if N<3 then 1

else {Fibonacci N-1} + {Fibonacci N-2} end

end

Question 2-1. Show how to implement a memoized version of the function (name it FibonacciM). Your

implementation should differ from the above just in that memoization is added. You should
use the same algorithm, rather than optimize the computation with, e.g., tail-recursion.

FibonacciM should be a one-parameter function, to be called in exactly the same way as

Fibonacci (i.e., {FibonacciM N}).

FibonacciM should behave as follows:

2/13

• For any positive integer argument, FibonacciM computes the correct result (see the implementation

above; for any valid N, {FibonacciM N} == {Fibonacci N} is true). For any other input, the be-
haviour is unspecified (you may simply ignore invalid arguments, as it is done in Fibnonacci above).

• When FibonacciM is applied to some argument N for the first time, the execution of {FibonacciM N}

takes approximately as much time as an execution of {Fibonacci N} would take.

• With a sufficiently large input value N (say, 40), when {FibonacciM N} is executed for the second (and

any subsequent) time the runtime is considerably shorter than that of an execution of {Fibonacci N}.

For example, the following might be observed:

{Browse {Fibonacci 40}} % takes 20 seconds

{Browse {Fibonacci 40}} % takes 20 seconds

{Browse {FibonacciM 40}} % takes 20 seconds

{Browse {FibonacciM 40}} % takes <1 second

Hint: use explicit state.

Question 2-2. What are the benefits of using memoized functions?

Question 2-3. Are there any drawbacks of memoizing functions? Can there be situations in which a
memoized function performs slower than a corresponding non-memoized version? Can

there be situations in which using memoized functions may lead to wrong (unexpected,

undesirable) computations?

The following is a skeleton code for the implementation of a function that takes as an argument a one-
parameter function and returns its memoized version:

fun {Memoize Function}

Memory = ...

...

in

fun {$ Argument}

...

end

end

For any one-parameter function F and any input X, both {F X} and {{Memoize F} X} return the same value

(or both calls fail). For example, the call {Memoize Factorial} returns a memoized version of the function

Factorial; for any non-negative N, {Factorial N} == {{Memoize Factorial} N} is true.

Question 2-4. Implement Memoize.

Question 2-5. Compare FibonacciM as defined above with the function returned by {Memoize Fibonacci}.

Does the latter perform in the same way as the former? If not, why?

Question 2-6. Suppose that the execution of {Fibonacci 40} takes 20 seconds, and also that subsequent
calls to FibonacciMwith the same argument take less than 1 second. In the example below,

the execution times of some of the calls are given in the comments. Give approximate

execution times for the remaining calls (replace the question marks with your estimates).

{Browse {Fibonacci 40}} % takes 20 seconds

{Browse {Fibonacci 40}} % takes 20 seconds

{Browse {Fibonacci 39}} % takes 13 seconds

{Browse {FibonacciM 40}} % takes 20 seconds

{Browse {FibonacciM 40}} % takes <1 second

3/13

{Browse {FibonacciM 39}} % takes ?? seconds

{Browse {{Memoize Fibonacci} 40}} % takes ?? seconds

{Browse {{Memoize Fibonacci} 40}} % takes ?? seconds

{Browse {{Memoize Fibonacci} 39}} % takes ?? seconds

FibonacciMemoized = {Memoize Fibonacci}

{Browse {FibonacciMemoized 40}} % takes ?? seconds

{Browse {FibonacciMemoized 40}} % takes ?? seconds

{Browse {FibonacciMemoized 39}} % takes ?? seconds

Your answer should be consistent with your implementation of FibonacciM and Memoize.

Question 2-7. What is the result of the call {Memoize Memoize}?

Solutions

Question 2-1. Different solutions were possible. A simple solution following the specifications is:

FibonacciM =

local

Memory = {NewCell nil}

fun {Recall N Result|Results}

case Result of !N#Result then Result

else {Recall N Results} end

end

in

fun {$ N}

try {Recall N Memory}

catch _ then

Result = {Fibonacci N}

Memory := (N#Result)|@Memory

Result

end

end

end

This solution uses explicit state (a cell) to keep a list of argument-result pairs from precious

computations. (The use of exceptions is inessential to the solution; since the result of
Fibonacci is always a number, Recall might return nil if the argument is seen for the

first time, rather than cause an exception to be thrown.) Note that when the result has

to be actually computed, FibonacciM calls Fibonacci. A better solution (which would
not, however, fully realize the specifications)1 would be to have FibonacciM call itself

recursively. In that case, FibonacciM would memoize not only the result for the particular
input with which it is called, but also results for all smaller inputs, e.g.:

FibonacciM =

local

Memory = {NewCell nil}

fun {Recall N Results}

case Results of nil then nil

[] (!N#Result)|_ then Result

[] _|Results then {Recall N Results} end

end

1Specifically, the application of FibonacciM to 40 would not take 20 seconds even on the first occasion if FibonacciM called itself
recursively; such an implementation would run linearly (at least on the first occasion) in terms of the input, since all results of recusrive
calls are computed just once, due to recursive memoization. Such a solution was not considered incorrect.

4/13

in

fun {$ N}

if N < 3 then 1

else Retrieved = {Recall N Memory} in

if Retrieved == nil

then Result in

Result = {FibonacciM N-1} + {FibonacciM N-2}

Memory := (N#Result)|@Memory

Result

else Retrieved

end

end

end

end

The use of a plain list was not mandatory, you could have used your own implementation

of a tree or a hash table, or the built-in Dictionary structure (in this case you were not

required to remember the exact syntax), etc. (See below for an example using a dictionary).

An interesting and elegant alternative is to use lazy computation:

FibonacciM =

local

fun lazy {MakeFibs N1 N2}

N1|{MakeFibs N2 N1+N2}

end

Fibs = {MakeFibs 1 1}

in

fun {$ N}

{Nth Fibs N}

end

end

Note that here again all recursive calls are memoized.

Question 2-2. The most important benefit of using a memoized function is that, for a given input, the
computation necessary to obtain the result is done just once, on the first occasion. This

may help in reducing the runtime of programs.

Question 2-3. If memoization is not directly supported in the language, using memoization requires the
programmer to actually implement it, either for each individual function (as above), or,

better, in the form of a generic memoizer (as below; implementing a memoizer for functions

of arbitrary arity is a bit more involved in Oz, but not impossible). In some languages you
can use libraries providing the memiozation functionality (e.g., use Memoize in Perl).

Memoization has its cost related to acessing the underlying data structure used to keep
track of the results of previous computations. If the memoized function is called with a

large number of different inputs and the actual computation quite simple, searching the

result memory may take more time than the actual computation. If the memoized function
is seldom called with the same argument more than once, memoization makes little sense.

In some cases, the first call to a memoized function may take more time than a call to

the non-memoized version; this is the case with the first implementation of FibonacciM
above (it caches the result in addition to the usual computation), though not with the latter

two implementations (these do recursive memoization which spares a lot of redundant
computation).

Memoization makes sense if the function is declarative (it is an implementation of a func-

tion in the mathematical sense); it makes no sense to memoize non-declarative functions,
e.g., a function that returns a random number given some specifications of the distribution

(e.g., the minimum and maximum). Another example is a function that should return a

5/13

new entity each time it is called, such as New: in the call {New Class init}, one would

normally expect a distinct object to be returned each time New is called with the same class
and initialization message.

Question 2-4. Here is a possible implementation of Memoize, using a dictionary:

fun {Memoize Function}

Memory = {Dictionary.new}

in

fun {$ Argument}

if {Dictionary.member Memory Argument}

then {Dictionary.get Memory Argument}

else Result = {Function Argument} in

{Dictionary.put Memory Argument Result}

Result

end

end

end

Question 2-5. FibonacciM and the result of {Memoize Fibonacci} may, in general, differ in at least two
respects:

• the efficiency of the underlying data structure — here the dictionary used in Memoize

is much more efficient than the plain list in FibonacciM as above;

• the recursive call — here the first FibonacciM and the result of {Memoize Fibonacci}

call the non-memoized Fibonacci for the actual computation, but the two other im-

plementations of FibonacciM make better use of recursion. Note that Memoize does

not know anything about the function it gets as an argument (beyond that it should
be a one-parameter function), and it can return a function which memoizes only the

arguments it was explicitly called with, and not the arguments used in recursive calls

(since the recursion, if any, is realized by the original function).

Question 2-6. {Browse {{Memoize Fibonacci} 40}} % takes 20 seconds

{Browse {{Memoize Fibonacci} 40}} % takes 20 seconds

{Browse {{Memoize Fibonacci} 39}} % takes 13 seconds

FibonacciMemoized = {Memoize Fibonacci}

{Browse {FibonacciMemoized 40}} % takes 20 seconds

{Browse {FibonacciMemoized 40}} % takes <1 second

{Browse {FibonacciMemoized 39}} % takes 13 seconds

Each call {Memoize Fibonacci} results in a new memoized version of Fibonacci; each
such memoized function has its own memory, and does not reuse the results of calls to the

other memoized functions. Furthermore, a function returned by Memoize remembers only

results for the arguments with which it has previously been called, but not results for the
recursive calls (in an actual computation), since the recursive calls are realized using the

non-memoized version (see above). The call {Browse {FibonacciMemoized 39}} takes as

much time as a call to the non-memoized version would take, despite FibonacciMemoized

having previously been called with the input 40.

Question 2-7. {Memoize Memoize} returns a memoized version of Memoize. Note that each call to Memoize

with the same function as the argument returns a distinct memoized version of the function.

That is,

{Memoize F} == {Memoize F}

is false for any function F, and thus the behaviour above. To the contrary, a memoized

version of memoize will always return the same memoized version when the same function
is passed to it as an argument. That is, in

6/13

MemoizedMemoize = {Memoize Memoize}

{Memoize F} == {Memoize F}

the equality test will be true for any function F. In this case (which was not covered by the

question) we would thus have:

{Browse {{MemoizedMemoize Fibonacci} 40}} % takes 20 seconds

{Browse {{MemoizeMemoized Fibonacci} 40}} % takes <1 second

{Browse {{MemoizeMemoized Fibonacci} 39}} % takes 13 seconds

Task 3 (25 points)

Consider the following code:

fun {Reactive Procedure}

proc {$ Message}

{Procedure Message}

end

end

fun {Active Procedure}

Stream

Port = {NewPort Stream}

proc {Process Message|Messages}

{Procedure Message}

{Process Messages}

end

in thread {Process Stream} end

proc {$ Message}

{Send Port Message}

end

end

fun {Hyperreactive Procedure}

proc {$ Message}

thread {Procedure Message} end

end

end

The three functions can be described as follows:

• Reactive takes as an argument a procedure Procedure, and returns a reactive object2 implemented
as a procedure. The object, when called with a message Message, immediately applies Procedure to

Message.

• Active takes as an argument a procedure Procedure, and returns an active object implemented as

a procedure, a stream, and a threaded stream-processor. The object, when called with a message
Message, appends Message to the stream by sending it to the port; messages are retrieved from the

stream and Procedure is applied to them in a unique, separate thread.

• Hyperreactive takes as argument a procedure Procedure, and returns a hyperreactive object imple-
mented as a procedure. The object, when called with a message Message, immediately starts a new

thread in which the Procedure is applied to Message.

2The terminology is partially invented for this example, and may not correspond to any widely accepted nomenclature.

7/13

Suppose you have an object that you want to use to ping3 two NTNU servers as follows:

Furu = ’furu.idi.ntnu.no’ % server names

Selje = ’selje.idi.ntnu.no’

{Browse pinging(Furu)}

{Pinger Furu} % start pinging furu

{Browse pinging(Selje)}

{Pinger Selje} % start pinging selje

Here, Pinger is a reactive, an active, or a hyperreactive object defined, respectively, as follows:

1. Pinger = {Reactive Ping},

2. Pinger = {Active Ping},

3. Pinger = {Hyperreactive Ping}.

The actual pinging is done by an application of the procedure Ping to a host name. Ping, given a host name,

displays the name three times in the browser window, in intervals of one second:

proc {Ping Host}

proc {Do Attempt}

if Attempt < 3 then

{Delay 1000}

{Browse ping(Host)}

{Do Attempt+1} end

end

in {Do 0} end

Question 3-1. Predict the output in the case when Ping is reactive.

Question 3-2. Predict the output in the case when Ping is active.

Question 3-3. Predict the output in the case when Ping is hyperreactive.

In each of the above cases,

• if there is only one output possible, write down the output;

• if more than one output is possible (hint: look for concurrency), specify how an output may look and

how it can’t look, and give a valid example.

In each case, concisely justify your answer.

Solutions

Question 3-1. A reactive object performs the whole message handling in the thread in which it is called.
Therefore, the main thread (the only thread in this case) cannot proceed before the object

is ready with pinging. Thus, the output must be:

3In networking, to ping a host is to send to the host a simple request to check whether the host is reachable across the network. The
example above is a rather unrealistic simulation.

8/13

pinging(’furu.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

pinging(’selje.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

Question 3-2. An active object collects the messages it is called with on a stream, and processes them, in
a separate thread, in the order they have arrived. The following must hold:

• the pinging(’furu.idi.ntnu.no’) printout must appear in the output before the

pinging(’selje.idi.ntnu.no’) printout;

• the pinging printout corresponding to a server (furu or selje) must appear in the
output before any ping printout corresponding to the same server;

• all ping(’furu.idi.ntnu.no’) printouts must appear in the output before any of the

pinging(’selje.idi.ntnu.no’) printouts;

Beyond that, the order is unspecified. Thus, the output could be:

pinging(’furu.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

pinging(’selje.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

It is perhaps, depending on the scheduller, most likely that the two first printouts in the
output are the pinging printouts; the question, however, was what outputs are possible,

not which are more or less likely than others.

Question 3-3. A hyperreactive object performs all message handling in separate threads, one thread per

message. The following must hold:

• the pinging(’furu.idi.ntnu.no’) printout must appear in the output before the
pinging(’selje.idi.ntnu.no’) printout;

• the pinging printout corresponding to a server (furu or selje) must appear in the

output before any ping printout corresponding to the same server;

Beyond that, the order is unspecified. Thus, the output could be:

pinging(’furu.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

pinging(’selje.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

ping(’furu.idi.ntnu.no’)

ping(’selje.idi.ntnu.no’)

Both the active and the hyperreactive objects can produce an output identical to that of the
reactive object. The hyperreactive object can produce all outputs that the active object can

produce, but the inverse is not true.

9/13

Task 4 (15 points)

Question 4-1. Explain what it means for a program to be declarative. Interpret the term ‘declarative’ in a

broad sense — describe more than one way in which it is used and understood.

Question 4-2. Give at least two examples of language features, or combinations of more than one feature,

that cannot be included in a declarative model of computation. Explain why it is that they
cannot.

Question 4-3. Explain what the benefits and drawbacks of using a declarative model of computation are.

Solutions

Question 4-1. Different answers were possible. According to CTMCP, a component (e.g., a function) is

declarative if on every logically equivalent occasion of use (e.g., application to the same
arguments) it performs in the same way (e.g., returns the same value). A program is

declarative if it specifies and uses only declarative components. Another view on declara-

tivity is that a program is declarative if it specifies what should be done (e.g., the results of
a computation) rather than how to do it (e.g., the algorithm). See Sec. 3.1 and preface to

Ch. 6 in CTMCP for details on how the books defines declarativeness.

Question 4-2. Features that make a language non-declarative include explicit state (e.g., in the form of

cells or ports), non-deterministic choice (in principle), and the combination of exceptions
with concurrency. (If you claimed that concurrency leads to non-declarativeness and pro-

vided good arguments, the answer was considered correct.) See the corresponding chapters

in CTMCP for further details.

Question 4-3. Different answers were possible. Easier reasoning about programs and robustness are
among the major features of a declarative model of computation. Unnatural code and

difficulties in simulation of real-life stateful objects are among the major drawbacks of
declarativeness. See the corresponding chapters in CTMCP for further details.

Task 5 (20 points)

Question 5-1. Define the terms ‘syntax’ and ‘semantics’.

Examine the following implementation of a syntax checker:4

\insert Solve.oz

declare

fun {CheckSyntax Tokens}

{SolveAll fun {$} {CheckProgram Tokens nil} true end} \= nil

end

proc {CheckProgram Tokens Rest}

{CheckInstructions Tokens Rest}

end

proc {CheckInstructions Tokens Rest}

choice

Tokens = nil

Rest = nil

4A syntax checker parses code just as a parser does, but unlike a parser, it returns the Boolean value true rather a structured
representation of the code if the code is a valid program.

10/13

[] Instructions in

{CheckInstruction Tokens Instructions}

{CheckInstructions Instructions Rest} end

end

proc {CheckInstruction Tokens Rest}

choice

{CheckDefinition Tokens Rest}

[] {CheckExpression Tokens Rest} end

end

proc {CheckDefinition Tokens Rest}

choice

{CheckVariableDefinition Tokens Rest}

[] {CheckFunctionDefinition Tokens Rest} end

end

proc {CheckExpression Tokens Rest}

choice

{CheckIdentifier Tokens Rest}

[] {CheckNumber Tokens Rest}

[] {CheckApplication Tokens Rest} end

end

proc {CheckVariableDefinition Tokens Rest}

Identifier Expression in

Tokens = ’<’|’define’|Identifier

{CheckIdentifier Identifier Expression}

{CheckExpression Expression ’>’|Rest}

end

proc {CheckFunctionDefinition Tokens Rest}

FunctionIdentifier ArgumentIdentifier Expression in

Tokens = ’<’|’define’|’<’|FunctionIdentifier

{CheckIdentifier FunctionIdentifier ArgumentIdentifier}

{CheckIdentifier ArgumentIdentifier ’>’|Expression}

{CheckExpression Expression ’>’|Rest}

end

proc {CheckIdentifier Tokens Rest}

Tokens = identifier(_)|Rest

end

proc {CheckNumber Tokens Rest}

Tokens = number(_)|Rest

end

proc {CheckApplication Tokens Rest}

Identifier Expression in

Tokens = ’<’|Identifier

{CheckIdentifier Identifier Expression}

{CheckExpression Expression ’>’|Rest}

end

Question 5-2. Using a BNF or EBNF notation, specify the syntax of the language recognized by the above

syntax checker.

Question 5-3. Define the terms ‘abstract syntax’, ‘abstract syntax tree’, and ‘derivation’.

Question 5-4. Describe a typical pipeline (sequence of steps) in which a program is processed from pro-

gram text to an internal structured representation. Name the components of this pipeline.

11/13

Solutions

Question 5-1. Syntax is a specification of the form of programs in a language. That is, the syntax of
a language specifies which sequences of tokens are valid programs in the language (and

which are not).

Semantics is a specification of the meaning of programs in a language. That is, the semantics
of a language specifies what happens during an execution of instructions in a valid program.

Question 5-2. The language recognized by the syntax checker can be specified using the following EBNF

grammar:

〈program〉 ::= { 〈instruction〉 }∗

〈instruction〉 ::= 〈variable definition〉 | 〈function definition〉 | 〈expression〉
〈variable definition〉 ::= ’<’ ’define’ 〈identifier〉 〈expression〉 ’>’
〈function definition〉 ::= ’<’ ’define’ ’<’ 〈identifier〉 〈identifier〉 ’>’ 〈expression〉 ’>’

〈expression〉 ::= 〈identifier〉 | 〈number〉 | 〈application〉
〈identifier〉 ::= identifier(λ)

〈number〉 ::= number(λ)

〈application〉 ::= ’<’ 〈identifier〉 〈expression〉 ’>’

Here, λ is any lexeme recognized by the tokenizer as an identifier or a numeral. (The

specification of 〈identifier〉 and 〈number〉 was not essential for a correct answer).

Question 5-3. A syntax is a specification of the form of a language. A program in a language is essentially
a (linear) sequence of characters which are processed by a tokenizer and a parser into a

(usually) non-linear complex data structure. Abstract syntax is a specification of a notation

used to represent the data structures output by a parser. Abstract syntax may, but does not
have to, resemble the concrete syntax. For example, the program

if X == 1 then Y = 2 else skip end

could be parsed into a hierarchical (non-linear) structure (e.g., nested records), which

could be printed, according to some abstract syntax, as follows:

if (equal (id (X), 1), assign (id (Y), 2), noop)

A grammar can be used to specify the (concrete) syntax in which the first line above is
valid; another, different grammar can be used to specify the (abstract) syntax in which the

second line above is valid.

An abstact syntax tree (an AST, a syntax tree) is a graph-theoretic, non-linear representation
of a particular output from a parser, in the form of a tree (a connected, non-cyclic graph).

A derivation is a process in which a sequence of tokens (in this context, a program in a pro-

gramming language) can be constructed by iteratively applying the rules (productions) of a
grammar. The rules specify how to replace a nonterminal with a sequence of nonterminals

and terminals. Starting from the initial nonterminal and stopping when no nonterminals
are left in the sequence, one should be able (though not necessarily in finite time) to derive

all programs in a language. A derivation is typically represented as a sequence of steps,

each step being a transition from one sequence of nonterminals and terminals to another
sequence, according to some rule from the grammar.

(The terminology varies; the terms ‘syntax tree’, ‘parse tree’, and ‘abstract syntax tree’ may

or may not, depending on the context, be considered synonyms.)

Question 5-4. The typical pipeline used to process a program from its linear representation as a sequence
of symbols to an internal, structured representation (a syntax tree) contains the following

elements:

(a) a tokenizer (including a lexical analyzer, a lexer) that takes a sequence of symbols
(characters) as input and returns a sequence of tokens (each token being a classified

lexeme) as output;

12/13

(b) a parser that takes a sequence of tokens as input and returns a structured representa-

tion of the program as output.

The pipeline may also include a preprocessor (which removes comments, expands macros,
etc.), an optimizer (which improves the intermediate representation),5 etc. The parser

may also be seen as composed of two elements: one that parses a sequence of tokens and

returns a parse tree, a hierarchical structure including the tokens as nodes, and another that
performs semantic analysis of the parse tree and returns an (abstract) syntax tree, which

abstracts from the concrete tokens used in the program. The terminology varies.

5Not to be confused with a target code optimizer.

13/13

