
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

Exam in TDT4165
Programming Languages

(with solutions)
Wednesday, December 3., 2008

Prepared by: Wacek Kuśnierczyk

Reviewed by: Ole Edsberg

General Comments and Hints

Read the following general comments and the rest of the exam text before you begin to answer.

• Throughout the text, the acronym ‘CTMCP’ is used to refer to the pensum book (P. van Roy and S.
Haridi: Concepts, Techniques, and Models of Computer Programming. MIT Press, 2004).

• The exam is composed of 5 tasks, each task contains one or more questions. To achieve the maximal
score, you need to correctly answer all questions in all tasks. If you skip or answer incorrectly a
question, your score will be reduced correspondingly. Different tasks contribute differently to the total
score; see each task for details.

• All code examples are given in Oz. Where you are asked to write code, the code should be in Oz as
well.

• Your answers should be concise, without text that is irrelevant or does not contribute to the answer.

• Each answer should include a brief explanation; rather than simply ‘yes’, you should answer ‘yes,
because . . . ’. Correct answers with no justification will score less than answers with justifications.
Incorrect answers with coherent explanations may still give you some points. You may also disagree
with what is stated in CTMCP or with what was explained during the lectures, but you should give
convincing arguments in such cases.

1/15

Task 1 (15 points)

This task focuses on object-oriented programming (OOP).

Subtask 1-1. Some programming languages are called ‘object-oriented programming languages’.

(a) What is object-oriented programming?

(b) What are the features of an object-oriented programming language?

(c) Objects in OOP are a specific kind of data structures. Characterize OOP objects with
respect to these three distinctions: declarative–nondeclarative, bundled–unbundled,
secure–insecure.

Subtask 1-2. Some programming languages support multiple inheritance, while others don’t.

(a) What is inheritance?

(b) What are the benefits of inheritance?

(c) What are the drawbacks of inheritance?

(d) What is multiple inheritance?

(e) What are the benefits of multiple inheritance?

(f) What are the drawbacks of multiple inheritance?

A counter is an object that stores a value (typically an integer) and exposes methods for increasing, decreas-
ing, resetting, and/or displaying the value. Consider the following partial code, written using the OOP part
of the Oz syntax.

class Counter
attr value
meth init(Value) ... end
meth increase(Value) ... end
meth value($) ... end

end

The method init(Value) initializes the attribute value with the value of Value . The method increase(Value)
updates the value of the attribute value to the sum of its current value and the value of Value . The method
value($) returns the current value of the attribute value .

Subtask 1-3. Complete the implementation according to the specifications above by replacing the ellipses
(...) with missing code.

Subtask 1-4. Show how to implement counters as objects without using the OOP syntax of Oz. You may
find helpful the following template:

Counter =
local

Attributes = ...
Methods = ...
proc {Init Message State}

init(Value) = ... in
(State.value) := ...

end
proc {Increase ...} ... end
proc {Value ...} ... end

in
’class’(...)

end

2/15

Your implementation should work with the function New implemented as follows:

fun {New Class Init}
State = {Record.make state Class.attributes}
{Record.forAll State
proc {$ Attribute}

Attribute = {NewCell _}
end}
proc {Object Message}

{Class.methods.{Label Message} Message State}
end

in
{Object Init}
Object

end

(source file: code/new.oz)

The function Record.make takes as arguments an atom and a list and returns a record with
the atom as its label and the items of the list as its fields. The fields have no values (i.e.,
they name unbound variables). The function Record.forAll takes as arguments a record
and a unary procedure and applies the procedure to every value in the record:

R = {Record.make record [some fields]}
% R is record(some:_ fields:_)

{Record.forAll R proc {$ Value} Value = value end}
% R is record(some:value fields:value)

The example below illustrates instantiation of the class Counter; the code should work with
both implementations:

C = {New Counter init(1)}
{C increase(3)}
{Browse {C value($)}}
% the browser displays 4

Solutions

Subtask 1-1. (a) According to CTMCP, object-oriented programming is a programming paradigm in
which programs are collections of interacting data abstractions. These data abstrac-
tions are called ‘objects’ and are bundled, typically stateful (non-declarative), and
possibly secure.

(b) An object-oriented programming language is a language that has syntactic and seman-
tic features enabling easy development of programs in the OOP style.

(c) Objects are typically non-declarative, but this is not an essential feature of OOP pro-
gramming. For example, in many programming languages (e.g., Java, Python) strings
are immutable objects. Objects are by definition bundled—the encapsulate both data
and methods for accessing the data. Objects can be secure, but this is not an essential
feature of OOP programming. In most OOP languages you can implement objects so
that the encapsulated data is directly available (no method calls are needed to access
it), while in some (e.g., Python) all data members of an object are accessible directly
(Python objects are insecure by the language design).

Subtask 1-2. (a) Inheritance is an OOP feature which allows the definition of new classes (types) by
subclassing previously defined ones, which are then called their ‘ancestors’ or ‘super-
classes’. The new classes inherit from the ancestors their members—attributes and
methods—which thus do not have to be defined anew.

3/15

(b) The major benefit of using inheritance is increase in modularity and reuse of code.
Operations common to objects of different classes that have shared ancestors can be
coded just once. Inheritance is also essential for subtype polymorphism, a feature
that enables the definition of polymorphic procedures, procedures that can take as
arguments objects of different, though related classes.

(c) Using inheritance can lead to problems such as breaking a class invariant (e.g., when
a successor class incorectly reimplements some functionality of an ancestor class) or
breaking security barriers (e.g., when a successor class provides, intentionally or not,
aditional access to members hidden in an ancestor class).

(d) Multiple inheritance (MI) is an inheritance scheme in which a class can be defined as
a direct successor (a child) of more than one ancestor (parent) class.

(e) Multiple inheritance allows one to create classes that inherit from more than one
parent, and thus may increase code reuse and enhance subtype polymorphism.

(f) Multiple inheritance may lead to problems with class member resolution, e.g., when
more than one parent provides a method with the same signature (name and argument
types). Some languages that allow MI provide a recovery scheme for such situations,
while in others the compiler or interpreter will complain about call ambiguity.

Subtask 1-3. The class Counter can be implemented using the OOP syntax as follows:

class Counter
attr value
meth init(Value) @value = Value end
meth increase(Value) value := @value + Value end
meth value($) @value end

end

(source file: code/counter-class.oz)

Subtask 1-4. The class Counter can be implemented without using the OOP syntax as follows:

Counter =
local

Attributes = [value]
Methods = methods(init:Init increase:Increase value:Value)
proc {Init init(Value) State}

(State.value) := Value
end
proc {Increase increase(Value) State}

(State.value) := @(State.value) + Value
end
proc {Value value(Value) State}

Value = @(State.value)
end

in
’class’(attributes:Attributes methods:Methods)

end

(source file: code/counter.oz)

You can test the implementation by running code/test-counter.oz .

Task 2 (10 points)

Subtask 2-1. In Oz, as in many other programming languages, it is possible to execute programs in a
lazy computation model.

(a) What does the term ‘lazy computation’ mean?

4/15

(b) What are the benefits of using lazy computation?
(c) What are the drawbacks of using lazy computation?

Subtask 2-2. Show how to build an infinite list (a stream) of all positive integers. You can find the
following template helpful:

Integers =
local

<...>
in

{<..>}
end

You should be able to retrieve the first n integers for any possible n (at least in theory):

{List.take Integers 3}
% returns [1 2 3]

{List.take Integers 10}
% returns [1 2 3 4 5 6 7 8 9 10]

{List.take Integers 1000000}
% returns a list of the first 1 million integers

Solutions

Subtask 2-1. (a) Lazy computation is a computation scheme in which the evaluation of an expression
or the execution of a statement can be postponed until it is actually needed.

(b) The major benefit of using the lazy computation model is the ability to postpone costly
operations until they have to be done. Operations that do not have to be done are
never executed. Besides, lazy computation provides a means for defining infinite data
structures, such as infinite lists (streams).

(c) Lazy computation was originally developed in the context of declarative computing,
where the result of a call to a function with particular arguments is always the same,
irrespectively of when the call is actually executed. In a non-declarative context, lazy
computation can lead to unexpected results; the model has to be implemented and
used with care.

Subtask 2-2. The infinite list Integers can be implemented as follows:

Integers =
local

fun lazy {Generate From}
From|{Generate From+1}

end
in

{Generate 1}
end

(source file: code/integers.oz)

You can test the implementation by running code/test-integers.oz .

Task 3 (25 points)

According to Wikipedia,1 “dc is a reverse-polish desk calculator which supports unlimited precision arithmetics.
It is one of the oldest Unix utilities, predating even the invention of the C programming language.” Here we will

1http://en.wikipedia.org/wiki/Dc (Unix) .

5/15

http://en.wikipedia.org/wiki/Dc_(Unix)

consider only a small subset of dc, which we shall call ‘µdc’ (‘micro dc’).2 You will formally define the syntax
and implement an interpreter for this tiny language.

The purpose of µdc is to perform arithmetic operations on integers, and to display their results. µdc is a
stack-based language: input values (integers) as well as intermediate results are kept on a stack; arithmetic
operators cause values to be popped from the stack, and the results of the calculations are pushed back onto
the stack. Additional commands are used to inspect the content of the stack. µdc operates on arbitrary inte-
gers,3 and supports four arithmetic operations: addition, subtraction, multiplication, and (integer) division.
In addition, it has three commands: p (for ‘peek’), s (for ‘state’ or ‘stack’), and r (for ‘reset’) that allow to
print the top element or all elements from the stack, or clear the stack, respectively.

Consider the following examples, executed on a hypothetical interpreter:4

push 1 and 2 onto the stack, add them, print the result
mdc> 1 2 + p
3

push 1, reset, push 2 and 3, print the whole content
mdc> 1 r 2 3 s
3
2

subtract 2 from 8, print the result, divide the result by 3,
push 4 onto the stack and print the whole content
mdc> 8 2 - p 3 / 4 s
6
4
2

Note the order in which arguments are passed to the arithmetic operators: the code 8 2 - results in 2 being
subtracted from 8, not 8 from 2; the code 6 3 / results in 6 being divided by 3, not 3 by 6, etc. Note also
the order of values in the output: the code 1 r 2 3 s results in 3 and then 2 being printed, in this and not
the inverse order (so that the first value printed by s corresponds to the top of the stack, and the last value
printed by s coresponds to the bottom of the stack).

Subtask 3-1. Use Backus-Naur Form (BNF) or Extended BNF (EBNF) to write a grammar that formally
specifies the syntax of µdc. You can use the following template:

〈program〉 ::= { 〈instruction〉 }
〈instruction〉 ::= . . .

. . . ::= . . .

Assume that only non-negative integers are allowed. You are free to use regular expressions
or plain text comments where you can’t enumerate all possible lexemes.

Subtask 3-2. Examine the following inputs. For each of them show, using your grammar, whether it is or
is not a valid program in µdc. Justify your answers.

(a) ""

(b) "1 2 +"

(c) "1 p 1 p + r +"

(d) "123 + p s"

(e) "p / p 1 2"

2mdc was used as a motivating example during the first few lectures.
3In practice, constraints on the range of integers will depend on the underlying implementation language, the operating system, the

hardware, etc.; we shall ignore this issue here.
4Lines beginning with a ‘#’ are comments, and are not part of the input or output; lines beginning with a ‘mdc>’ show the input; lines

with no prefix show the output.

6/15

Subtask 3-3. Read the following specification, and implement an interpreter for µdc.

• Programs are passed to the interpreter already parsed, in the form of a flat list of
tokens; you do not implement the parser. The interpreter iteratively consumes a token
at a time, performing an appropriate action, and stopping when no more tokens are
available.

• Each token is an Oz record containing one value. Tokens with the record label ‘int’
contain an integer; tokens with the label ‘op’ contain a value that makes the interpreter
perform one of the four arithmetic operations; tokens with the label ‘cmd’ contain a
value that makes the interpreter apply one of the two commands.

• Internally, the interpreter uses a stack for storing values. When the token consumed
by the interpreter is an ‘int’ record, the integer value is pushed onto the stack. When
the consumed token is an ‘op’ record, two values are popped from the stack, the corre-
sponding arithmetic operation is applied to them in the appropriate order (see above),
and the result is pushed onto the stack. When the consumed token is a ‘cmd’ record,
the appropriate stack-printing operation is executed, and the stack is left unchanged.

You should use the following template; fill in the ‘<...>’ parts:

% the interpreter procedure
proc {MicroDC Program}

<...>
in

<...>
end

Your code must not exceed 50 lines, excluding comments. Below is an annotated example
of application of the interpreter to a simple program:

% interpretation of a simple program
% the definitions of Add, Div, and S are not shown
Program = [int(6) int(4) int(2) cmd(S) op(Add) op(Div) cmd(S)]
{MicroDC Program}
% the browser displays, in separate lines, from top to bottom:
% 2, 4, 6, and 1

Additional requirements and comments:

• You can implement the internal stack in any way you like; a flat list is good enough
for the purpose.

• You are free to decide whether your implementation should take a pure functional
approach, or use explicit mutable state.

• The values included in op and cmd records (e.g., captured in the variables Add and
S above) can be atoms (e.g., ’+’, plus, s, stack, etc.), functions and procedures
(e.g., fun {Add N M} ... end or proc {S Stack} ... end), or whatever else you
find convenient.

Solutions

Subtask 3-1. Using EBNF and Perl-style regular expressions with POSIX classes, the grammar can be
written as follows:

〈program〉 ::= { 〈instruction〉 }
〈instruction〉 ::= 〈integer〉 | 〈operator〉 | 〈command〉
〈integer〉 ::= regex([:digit:]+)
〈operator〉 ::= + | - | * | /
〈command〉 ::= p | s | r

7/15

Here, 〈program〉 is a (possibly empty) list of tokens. 〈tokens〉 is defined as a token optionally
followed by a list of tokens. 〈integer〉 is defined as one or more digits (here, ‘regex(. . .)’
denotes a regular expression).

Subtask 3-2. According to the grammar above, all four sequences are syntactically valid; the answer may
differ for your grammar. Note that the syntactic validity of input sequences has nothing to
do with their semantics; all the examples above are syntactically valid, even though a dc
interpreter would complain during an evaluation of some of them.

Subtask 3-3. In a pure functional approach,5 µdc can be implemented as follows:

proc {MicroDC Program}
Ops = ops(’+’:Number.’+’ ’-’:Number.’-’ ’*’:Number.’*’ ’/’:Int.’div’)
Cmds = cmds(’p’:fun {$ Stack} {Browse Stack.1} Stack end

’s’:fun {$ Stack} {ForAll Stack Browse} Stack end
’r’:fun {$ _} nil end)

proc {Iterate Tokens Stack}
case Tokens
of int(Int)|Tokens then

{Iterate Tokens Int|Stack}
[] op(Op)|Tokens then

Int1|Int2|Rest = Stack in
{Iterate Tokens {Ops.Op Int2 Int1}|Rest}

[] cmd(Cmd)|Tokens then
UpdatedStack = {Cmds.Cmd Stack} in
{Iterate Tokens UpdatedStack}

else skip end
end

in {Iterate Program nil}
end

(source file: code/microdc-stateless.oz)

A stateful µdc can be implemented as follows:

proc {MicroDC Program}
Ops = ops(’+’:Number.’+’ ’-’:Number.’-’ ’*’:Number.’*’ ’/’:Int.’div’)
Cmds = cmds(’p’:proc {$ Stack} {Browse (@Stack).1} end

’s’:proc {$ Stack} {ForAll @Stack Browse} end
’r’:proc {$ Stack} Stack := nil end)

Stack = {NewCell nil}
proc {Iterate Tokens}

case Tokens
of int(Int)|Tokens then

Stack := Int|@Stack
{Iterate Tokens}

[] op(Op)|Tokens then
Int1|Int2|Rest = @Stack in
Stack := {Ops.Op Int2 Int1}|Rest
{Iterate Tokens}

[] cmd(Cmd)|Tokens then
{Cmds.Cmd Stack}
{Iterate Tokens}

else skip end
end

in {Iterate Program}
end

(source file: code/microdc-stateful.oz)
5If not counting the use of Browse.

8/15

You can test the implementation by running code/test-microdc.oz .

Task 4 (25 points)

A circular list (CL) is a list in which the last element is followed by the first one; effectively, the list is infinite.
(Effectively, it is nonsensical to speak of the last element on the list; what is meant by ‘last’ is the last element
in the underlying implementation, which typically is a plain list.) In this task you will define the abstract
data type (ADT) for one-way circular lists—circular lists that can be traversed in only one direction. You also
need to provide two bundled secure implementations: one declarative, and one non-declarative.

Subtask 4-1. Explain the terms ‘declarative’, ‘bundled’, and ‘secure’ in the context of data abstraction:

(a) What is a declarative data structure?

(b) What is a bundled data structure?

(c) What is a secure data structure?

Subtask 4-2. What is observational declarativeness?

A circular list contains zero, one, or more elements; the first of them (if there are any) is the head of the
list. Internally, the content of a circular list can be represented in many ways; here, we will use linked lists
(i.e., plain lists in Oz). When a circular list is accessed, the last element in the underlying list is followed,
recursively, by its first element, as if they were linked. For example, a circular list might have [1 2 3] as the
underlying representation. Then, conceptually, the circular list is [1 2 3 1 2 3 1 ...], its head is 1, and
its tail is [2 3 1 2 3 1 2 ...] (another circular list).

Using the notation of Sec. 3.7 in CTMCP,6 we can specify the interface of a non-declarative implementation
as follows:

• create a new empty list:
〈fun {New}: 〈CL T〉〉

• check whether a list is empty:
〈fun {Empty 〈CL T〉}: Bool〉

• get the head of a list:
〈fun {Head 〈CL T〉}: T〉

• get the tail of a list:
〈fun {Tail 〈CL T〉}: 〈CL T〉〉

• insert an element at the head of a list:
〈proc {Insert 〈CL T〉 T}〉

• drop the element at the head of a list:
〈proc {Drop 〈CL T〉}〉

• rotate a list, i.e., set its next-to-head element as the head:
〈proc {Rotate 〈CL T〉}〉

We make the following assumptions:

• The tail of a circular list is another circular list; the tail of the circular list [1 2 3 1 2 3 ...] is the
circular list [2 3 1 2 3 1 ...].

6Here, T denotes some type of values, and 〈CL T〉 denotes a circular list of elements whose type is T. In Oz, there is no explicit
typing and T will effectively mean that the values can be of any type. Int denotes the type of integers.

9/15

• Inserting or dropping an element into or from a circular list will effectively insert or drop it recursively;
inserting 0 into the circular list [1 2 3 1 2 3 ...] will modify it to [0 1 2 3 0 1 2 3 ...], while
dropping 1 from the circular list [1 2 3 1 2 3 ...] will modify it to [2 3 2 3 ...].

Subtask 4-3. Show which parts of the above interface specification need to be modified for the case of
an implementation that is observationally declarative.

Subtask 4-4. Compare the declarative and the non-declarative versions of circular lists.

(a) What are the benefits of using an observationally declarative circular list?

(b) What are the benefits of using a non-declarative circular list?

Subtask 4-5. Provide a non-declarative implementation of the CL ADT. You may, though you are not
obliged to, use the following template:

class CL
attr ...
meth ... end
...

end

Below is an annotated example of how your implementation should work:

% create a new circular list:
CL1 = {New CL init} % the internal representation is nil

% try to display its head (there is none!)
try {Browse {CL1 head($)}}
catch Exception then {Browse Exception} end % displays an exception

% insert three elements, display the head
{CL1 insert(1)} % the internal representation is [1]
{CL1 insert(2)} % the internal representation is [2 1]
{CL1 insert(3)} % the internal representation is [3 2 1]
{Browse {CL1 head($)}} % displays 3

% get the tail, rotate it, drop an element, rotate, display the head
CL2 = {CL1 tail($)} % the internal representation is [2 1 3]
{CL2 rotate} % the internal representation is [1 3 2]
{CL2 drop} % the internal representation is [3 2]
{CL2 rotate} % the internal representation is [2 3]
{Browse {CL2 head($)}} % displays 2

Note: {CL1 tail($)} returns a new circular list. You may consider implementing an addi-
tional initializer used internally in a call to tail($) (but other solutions are possible).

Subtask 4-6. Provide an observationally declarative implementation of the CL ADT. Below is an anno-
tated example of how your implementation should work:

CL1 = {New CL init} % the internal representation is nil
CL2 = {CL1 insert(1)} % internally, CL1 is nil, CL2 is [1]
CL3 = {CL2 insert(2)} % internally, CL3 is [2 1]
CL4 = {CL3 rotate} % internally, CL4 is [1 2]
{Browse {CL4 head($)}} % displays 1

10/15

Solutions

Subtask 4-1. (a) According to CTMCP, a declarative data structure is one that cannot change its state,
i.e., its components are fixed and immutable. (Unbound dataflow variables are not
considered mutable variables.)

(b) According to CTMCP, a bundled data structure is one that contains both data and
procedures that can access the data.

(c) According to CTMCP, a secure data structure is one such that the data it contains can
be accessed only with the use of dedicated procedures, which may be bundled or not
within the structure.

Subtask 4-2. According to CTMCP, observational declarativeness is a property of a component that “be-
haves declaratively, i.e., as if it were independent, stateless, and deterministic, without
necessarily being written in a declarative computation model.” This means that an observ-
ably declarative component may in fact be implemented using mutable state (for example,
for the purpose of caching the results of costly computations, as in the case of memoized
functions), but the mutability is not observable through the component’s interface.

Subtask 4-3. The following modifications are needed for the declarative case:

• insert an element at the head of a list:
〈fun {Insert 〈CL T〉 T}: 〈CL T〉〉

• drop the element at the head of a list:
〈fun {Drop 〈CL T〉}: 〈CL T〉〉

• rotate a list, i.e., set its next-to-head element as the head:
〈fun {Rotate 〈CL T〉}: 〈CL T〉〉

Subtask 4-4. (a) A declarative circular list has fixed content, which is the same on any occasion the
list is accessed. This makes writing programs using such lists slightly awkward, but
greatly simplifies their analysis.

(b) A non-declarative circular list has a mutable content, and thus it is not necessary to
create a new object each time the content has to be modifed. This makes writing
programs using such lists much easier, but complicates their analysis.

Subtask 4-5. Non-declarative circular lists can be implemented as follows:

class CL
attr state
meth init @state = nil end
meth Init(State) @state = State end
meth empty($) @state == nil end
meth head($) (@state).1 end
meth tail($) {New CL Init({Append (@state).2 [(@state).1]})} end
meth insert(Item) state := Item|@state end
meth drop state := (@state).2 end
meth rotate state := {Append (@state).2 [(@state).1]} end

end

(source file: code/cl-nondeclarative.oz)

Subtask 4-6. Declarative circular lists can be implemented as follows:

class CL
attr state
meth init @state = nil end
meth Init(State) @state = State end
meth empty($) @state == nil end
meth head($) (@state).1 end
meth tail($) {New CL Init({Append (@state).2 [(@state).1]})} end

11/15

meth insert(Item $) {New CL Init(Item|@state)} end
meth drop($) {New CL Init((@state).2)} end
meth rotate($) {New CL Init({Append (@state).2 [(@state).1]})} end

end

(source file: code/cl-declarative.oz)

You can test both implementations by running code/test-cl.oz .

Task 5 (15 points)

Consider the following program:

local X P Q in
X = 1
P = proc {$} {Browse X} end
Q = proc {$ X} local X in X = 2 {P} end end
{Q X}

end

Subtask 5-1. Show the state of abstract machine during an execution of the program just before the
statement {Q X} is executed. (Ignore the identifier Browse when you show the content of
environments.)

Subtask 5-2. Provide formal semantics for the procedure application statement. The semantic statement
is:

({〈id〉0 〈id〉1 . . . 〈id〉n}, E)

where E is an environment.

Subtask 5-3. Using the definition from Subtask 5-2, show how the execution of the above program
proceeds from the state discussed in Subtask 5-1. At each step the single assignment store
should contain only those variables that are reachable from the code to be executed. What
will be printed in the browser window?

Subtask 5-4. Oz is a lexically scoped language. Explain the terms lexical scoping and dynamic scoping.

Subtask 5-5. Pretending that Oz is dynamically scoped, suggest an appropriate formal semantics for
procedure application statements. (It suffices to show how this semantics differs from the
one in Subtask 5-2.)

Subtask 5-6. Using the definition from Subtask 5-5, show how the execution of the above program
proceeds from the state discussed in Subtask 5-1. At each step the single assignment store
should contain only those variables that are reachable from the code to be executed. (It
suffices to show how the execution will differ from the one in Subtask 5-3.) What will be
printed in the browser window?

Solutions

Subtask 5-1. The state of the abstract machine during an execution of the above program (translated
into the kernel language) just before the statement {Q X} is executed is as follows:

([({Q X}, {Q→ v3, X→ v1})],
{ v1 = 1, v2 = (proc {$} {Browse X} end, {X→ v1}),
v3 = (proc {$ X} local X in X = 2 {P} end end, {P→ v2}) })

where vi are variables in the single assignment store.

12/15

Subtask 5-2. The semantic statement is:

({〈id〉0 〈id〉1 . . . 〈id〉n}, E)

The rule of execution is:

• If 〈id〉0 is not declared in E, raise an error.

• Otherwise, if E(〈id〉0) is unbound, suspend the execution.

• Otherwise, if E(〈id〉0) is a closure of the form

(proc {$ 〈id〉 ′1 . . . 〈id〉 ′n} 〈statement〉 end, CE)

where CE is a closure environment, push onto the stack the semantic statement

(〈statement〉, CE ′)

where CE ′ = CE + {〈id〉 ′1 → E(〈id〉1), . . . , 〈id〉 ′n → E(〈id〉n)}

• Otherwise, raise an error.

Subtask 5-3. The execution of the above program, starting at the statement {Q X}, is as follows:

(a) ([({Q X}, {X→ v1, P→ v2, Q→ v3})],
{ v1 = 1, v2 = (proc {$} {Browse X} end, {X→ v1}),
v3 = (proc {$ X} local X in X = 2 {P} end end, {P→ v2}) })

(b) ([(local X in X = 2 {P} end, {X→ v1, P→ v2})],
{ v1 = 1, v2 = (proc {$} {Browse X} end, {X→ v1}) })

(c) ([(X = 2 {P}, {X→ v4, P→ v2})],
{v1 = 1, v2 = (proc {$} {Browse X} end, {X→ v1}), v4})

(d) ([(X = 2, {X→ v4, P→ v2}), ({P}, {X→ v4, P→ v2})],
{v1 = 1, v2 = (proc {$} {Browse X} end, {X→ v1}), v4})

(e) ([({P}, {X→ v4, P→ v2})],
{v1 = 1, v2 = (proc {$} {Browse X} end, {X→ v1}), v4 = 2})

(f) ([({Browse X}, {X→ v1})],
{v1 = 1})

(g) ([],
{ })

In the browser window, 1 will be printed.

Subtask 5-4. Lexical and dynamic scoping are two different approaches to resolving the value of a vari-
able (or, as in Oz, to find which variable an identifier is mapped to) in a procedure call.

In lexical scoping, variables are looked-up using the closure environment of the closure ob-
ject, which is an extension of the environment present at the time the closure was defined.

In dynamic scoping, variables are looked-up using the current evaluation environment,
which is an extension of the environment in which the call was made.

Subtask 5-5. The semantic statement is:

({〈id〉0 〈id〉1 . . . 〈id〉n}, E)

The rule of execution is:

• If 〈id〉0 is not declared in E, raise an error.

• Otherwise, if E(〈id〉0) is unbound, suspend the execution.

• Otherwise, if E(〈id〉0) is a procedure object of the form

proc {$ 〈id〉 ′1 . . . 〈id〉 ′n} 〈statement〉 end
push onto the stack the semantic statement

(〈statement〉, E ′)

13/15

where E ′ = E + {〈id〉 ′1 → E(〈id〉1), . . . , 〈id〉 ′n → E(〈id〉n)}

• Otherwise, raise an error.

Note that the closure environment is no longer used when a procedure is called, and can
thus be removed from the closure. In fact, closures are no longer needed, since procedure
objects without an accompanying environment are sufficient for computing with dynamic
scoping. (Retaining closure environments in your definition was not considered an error.)

Subtask 5-6. The execution of the above program, starting at the statement {Q X}, is as follows:

(a) ([({Q X}, {X→ v1, P→ v2, Q→ v3})],
{ v1 = 1, v2 = proc {$} {Browse X} end,
v3 = proc {$ X} local X in X = 2 {P} end end })

(b) ([(local X in X = 2 {P} end, {X→ v1, P→ v2, Q→ v3})],
{ v1 = 1, v2 = proc {$} {Browse X} end,
v3 = proc {$ X} local X in X = 2 {P} end end })

(c) ([(X = 2 {P}, {X→ v4, P→ v2, Q→ v3})],
{ v2 = proc {$} {Browse X} end,
v3 = proc {$ X} local X in X = 2 {P} end end, v4 })

(d) ([(X = 2, {X→ v4, P→ v2, Q→ v3}), ({P}, {X→ v4, P→ v2, Q→ v3})],
{ v2 = proc {$} {Browse X} end,
v3 = proc {$ X} local X in X = 2 {P} end end, v4 })

(e) ([({P}, {X→ v4, P→ v2, Q→ v3})],
{ v2 = proc {$} {Browse X} end,
v3 = proc {$ X} local X in X = 2 {P} end end, v4 = 2 })

(f) ([({Browse X}, {X→ v4, P→ v2, Q→ v3})],
{ v2 = proc {$} {Browse X} end,
v3 = proc {$ X} local X in X = 2 {P} end end, v4 = 2 })

(g) ([],
{ })

In the browser window, 2 will be printed.

Note that given the semantics for dynamically scoped procedure application given above,
environments preserve mappings even if they are no longer needed. (You may have defined
a different semantics.)

Task 6 (10 points)

Consider the following procedure that takes as an argument a cell and is supposed to update its content by
increasing it by 1:

proc {Increase Cell} Old in
{Exchange Cell Old Old+1}

end

Subtask 6-1. Unfortunately, Increase does not work as expected. When the following code is executed,
no output appears in the browser window:

local C = {NewCell 0} in
{Increase C}
{Browse @C}

end

Explain why there will be no output printed. Hint: translate the definition of Increase to
the kernel language.

14/15

Subtask 6-2. Provide a reimplementation of Increase (call it PlusPlus) that fixes the problem, so that
if the new version were used in the code above, 1 would be printed.

Subtask 6-3. Consider the following program:

local C = {NewCell 0} in
thread {PlusPlus C} end
thread {PlusPlus C} end
{Browse @C}

end

What are the values that could be printed in the browser window during an execution of
the above program? Use your definition of PlusPlus to justify the answer.

Solutions

Subtask 6-1. The definition of Increase translates to the (semi-)kernel language as follows:

Increase =
proc {$ Cell}

local Old New in
New = Old + 1
{Exchange Cell Old New}

end
end

Since Old is unbound at the time New = Old + 1 is executed, a call to Increase will freeze
the calling thread.

Subtask 6-2. Here is one way to implement PlusPlus:

proc {PlusPlus Cell} Old in
{Exchange Cell Old thread Old+1 end} end

(source file: code/plusplus.oz)

Subtask 6-3. Exchange performs an atomic swap. Irrespectively of the statement New = Old + 1 run-
ning in a separate thread in each call to PlusPlus, the content of C is first swapped from
0 to 1 (by whichever of the two threads), and then from 1 to 2 (by the other of the two
threads). At the end of the program, the content of C will always be 2.

However, depending on the scheduler, the Browse statement may be executed before the
cell is updated for the first time, between the two updates, or after the two updates. Thus,
different executions of the program may result in 0, 1, or 2 printed in the browser window.

15/15

