Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and Electrical
Engineering

Department of Computer and Information Science

Exam in TDT4165
Programming languages

December 19, 2012

SUGGESTED SOLUTIONS / LOSNINGSFORLAG (v.1)

Language: English
Contact during the exam:

* Qystein Nytre TIf 91897606
Exam aids: C. Only approved calculator allowed. No written or printed material permitted.
There is only one version of this exam. This one... The exam has 17 subtasks with equal
weight. Short and succinct answers are preferred. Do not risk negating a correct answer by
exam-bloat! When in doubt about interpretation, state your assumptions.
All programs should be written in Oz.

Part 1 Computational model and semantics

Task 1.1. What is the difference between definitional and observational
declarativity? Explain by means of explicit Oz-code examples.

Solution

Definitional declarativity: A programming language that guarantees delarativeness
(e.g. Oz, Haskell).

declare

fun {Def A B}
A+ B

end

Observational declarativity: The accessible parts of a program unit (its interface)
cannot be used to assert that the unit is not declarative. L.e. its behavior is declarative, so
far as external units know, even though the implementation may use non-declarative
techniques. Another way to say it: Any single use of the program unit observed will
always yield the same output for any given input (e.g. Java).

declare
fun {Obs A B}
XYin
X = {NewCell 0}
thread
X 1= @X+A
end
thread
X := @X+B
Y = @X
end
Y
end

1/8

{Browse {Obs 3 4}}

Task 1.2. Explain the new semantic rules and other changes necessary to extend
the computation model with relational computation.

Solution

The relational model of computation covered in Ch. 9 is an extension of the declarative
sequential model of computation from Ch. 2 with:

* non-deterministic choice statements

* failure statements.

Task 1.3. Are concurrent programs with exceptions declarative? Explain.

Solution

Exceptions alone are (observational) declarative. Concurrency with threads and shared
logical variables is not (observational) declarative if there is a chance that a unification-
error will cause the program not to terminate.

The combination of exceptions and concurrent threads enable unification errors to be
caught, and that non-deterministic, or error prone, programs will succeed terminating
with unexpected results, these are thus non-declarative.

Task 1.4. Explain the difference between message-passing concurrency and
shared-state concurrency.

Solution

Message passing concurrency: Is concurrency among two or more processes (here, a
process is a flow of control; rather than a particular type of kernel object) where there is
no shared region between the two processes. Instead they communicate by passing
messages. There are several different types of message-passing semantics
(reliable/unreliable; asynchronous/synchronous with
rendezvous/RemoteProcedureCall).

Shared State Concurrency: Is concurrency among two or more processes (here, a
process is a flow of control; rather than a particular type of kernel object) which have
some shared state between them; which both processes can read to and write from

Task 1.5. What is mutable state? When is it necessary? Explain by means of a
code example in Oz.

Solution

Mutable state means that the state of a variable/object can be changed after it has been
created and assigned a value. Necessary especially in non-declarative/imperative
programming languages, i.e. programs with states.

local X in
X = {NewCell X}
X:=A
X := @X+B

end

Task 1.6. What is the difference between a statement and an expression?

Solution

Statements are roughly equivalent to sentences in natural languages. A statement forms
a complete unit of execution.
E.g.: for-loops, assignment (A := A + 5).

2/8

An expression is a construct made up of variables, operators, and method invocations,
which are constructed according to the syntax of the language, which evaluates to a
single value.

E.g.: 2+5.

Give examples of how a procedure value can act as an expression.

Solution

declare

proc {Proc A B C}
C=A+B

end

declare C

{Proc12C}
{Browse C}

Task 1.7. What is a parameter?

Solution

A parameter is a variable found in a function definition. It is common to use the term
formal parameters and actual parameters; formal parameters refer to the variables,
while actual parameters are their values.

Explain the role of parameter transmission.

Solution

This is the different ways that the actual parameter is transmitted to a subprogram and
the implications of the transmission methods in terms of their effects on the results of
subprogram execution.

Which types do we have (in different programming languages) and how can they
be implemented/simulated in Oz?

Solution ‘

From Exam fall 2011:

Call by reference: Prosedyren har tilgang til variabelen som aktuelt parameter.
Standard i Oz, dvs. Variabelen kan bindes i prosedyren.

Call by variable: Spesialtilfelle av Call by reference. Prosedyren kan f.eks. kopiere en
referanse til en variabel, for deretter a kunne bruke den lokale variabelen som et alias.
Call by value: Verdien av aktuelt parameter overfgres, men prosedyren kan ikke
binde/endre det aktuelle parameteret.

Call by value-result: Effekt som i Call by reference, men implementeres ved a kopiere
verdien, og nar prosedyren terminerer, binde eller oppdatere det aktuelle parameteret.
Det aktuelle parameteret vil altsa ikke endres mens prosedyren er aktiv.

Call by name: Aktuelt parameter evalueres i sitt definisjonsnavnerom fgrst ved behov.
Implementeres ved at det lages en kontinuasjon, thunk, som beregner parameterverdien
nar den trengs. Call by name er lat utfgrelse uten memorering.

Call by need: En variant av Call by name, hvor thunk-en kalles bare en gang, og ikke
hver gang det formelle parameteret brukes. Call by need er det samme som lat
evaluering med memorering.

3/8

Part 2 Grammars, parsing and relational programming

Task 2.1. Given a (naive) attempt of a grammar G for Boolean expressions
without variables, and with the binary infix operators a (for and) and o
(for or), the unary prefix operator n (for not) and the values t (true) or
f (false):

<prop> ::=<bexpr> | <uexpr> | <stm>
<bexpr> ::= <stm> a <prop> | <stm> o <prop>
<uexpr> ::=n <prop> | <prop>

<stm> =t | f| (<prop>)

Make a relational parser in Oz that uses SolveAll to produce all possible parse
trees for a sentence of G. Represent sentences as lists and parse trees as records

(e.g. o(a(t n(f)) o(f n(t)))).

‘ Solution ‘

\insert 'Solve.oz'

declare
fun {Parse Tokens}
fun {Expr Before Rest}
case Rest of [X] then
Before=nil
X
[1H|T then
choice
H='0" o({Expr nil Before} {Expr nil T})
[l
H='a" a({Expr nil Before} {Expr nil T})
[l
if H=='n' then
if {List.length T} >= 2 then
{Expr {Append Before [H(T.1)]} T.2}
else
Before=nil
H(T.1)
end
else {Expr {Append Before [H]} T}
end
end
else
fail
end
end
in
{SolveAll fun {$} {Expr nil Tokens} end}
end

{Browse '------- "}

{Browse 1#{Parse ['n' 'f' 'a' 't']}}

{Browse 2#{Parse ['t' 'a' 'f' '0o' 'n' 't']}}

{Browse '3, not possible(?)'}

{Browse 'Example'#{Parse ['t' 'a' 'n' 'f' '0' 'f' '0' 'n' 't']}}

Task 2.2. Write an evaluator for expressions represented as parse trees
(returning either true or false).

Solution ‘

declare
fun {Evaluate E}

4/8

{Browse E}
case E of n(I) then {Evaluate I}
[1 t() then true
[1f() then true
[1a(A B) then
case A of a(C D) then
{Evaluate C}=={Evaluate D}
[] o(C D) then
{Evaluate C}=={Evaluate D}
else
{Evaluate A}
end
andthen {Evaluate B}
[1 o(A B) then
case A of a(C D) then
{Evaluate C}=={Evaluate D}
[] o(C D) then
{Evaluate C}=={Evaluate D}
else
{Evaluate A}
end
andthen {Evaluate B}
else
false
end
end

{Browse '--TrueTree------ ¥
declare TrueTree = o(a(t n(f)) o(f n(t)))
{Browse {Evaluate TrueTree}}

{Browse '--FalseTree------ b
declare FalseTree = a(o(t n(f)) o(r t))
{Browse {Evaluate FalseTree}}

Task 2.3. Give examples, if possible, of sentences with 0, 1, 2 or 3 parse trees
respectively. (Show all the alternative trees).

Solution ‘

{Browse 1#{Parse ['n' 'f' 'a' 't']}}
>> [a (n(f) 1)]

{Browse 2#{Parse ['t' 'a' 'f' '0o' 'n' 't']}}
>> [a(t o(f n(t))) o(a(tf) n(t))]

{Browse '3, not possible (?)'}

>>

Task 2.4. Make your own grammar for Boolean expressions over the same
alphabet, but suitable for recursive descent parsing.

Solution

There are many ways to answer this question. One solution is to say that the grammar
does not need to be changed if it allows lookahead of 2 or more. We could apply left-
factorization. The resulting grammar will then look something like:

<prop> ::= <bexpr> | <uexpr> | <stm>
<bexpr> ::= <stm> <bexpr'>

<bexpr'> ::= a <prop> | o <prop>
<uexpr> ::=n <prop> | <prop>

<stm> =t | f| (<prop>)

Task 2.5. Write a recursive descent parser for your own grammar.

Solution

5/8

%% % Bexpr

declare

fun {Bexpr In Ut}
case In of ['t'] then

Ut = nil
t()
[1['f'] then
Ut = nil
f()
[T H|'a'|T then

if H==n(t) orelse H==n(f) orelse H=="f" orelse H=="t' then
a(H {Bexpr {Uexpr T _} Ut})
else Ut = In end
[T H|'O'|T then
if H==n(t) orelse H==n(f) orelse H=="f" orelse H=="t' then
o(H {Bexpr {Uexpr T _} Ut})
else Ut = In end
[1 n(H) then
Ut = nil
n(H)
else
Ut = In
end
end
{Browse '-------- "}
declare N
{Browse {Bexpr ['f''0' 'n' 'f" 'a' 't' 'a' 'n" 'f'] N}}
{Browse N}

%% % Uexpr
declare
fun {Uexpr In Ut}
case In of 'n'|M|nil then
Ut = nil
n(M)
[1'n"IM]|T then
ut=T
n(M)|T
else
Ut =In
In
end
end
{Browse '-------- >
declare N
{Browse {Uexpr ['n' 't'] N}}
{Browse N}

% %% Parse
declare
fun {Parse In Ut}
PsI Ul in
case In of H|T then
I={UexprIn _}
Ps={Bexpr I Ut}
Ps
else
Ut=In
nil
end
end
{Browse '-------- >
declare N
{Browse 'parsed:'#{Parse ['n' 't' 'a' 'n' 'f' '0' 't'] N} }
{Browse 'unparsed:'#N}

6/8

Part 3 Mixed

Task 3.1. What is a closure? Give an example.

‘ Solution ‘

A closure (also lexical closure or function closure) is a function or reference to a function
together with a referencing environment - a table storing a reference to each of the non-
local variables (also called free variables) of that function. A closure - unlike a plain
function pointer - allows a function to access those non-local variables even when
invoked outside of its immediate lexical scope.

local PlusX X in
X=4
fun {PlusX A}
A+X
end
{Browse {PlusX 2}}
end

Task 3.2. Define a function that computes the length of an n-dimensional vector
A, assuming that vectors are represented as lists:

1Al = A2+ As2 4o+ AL

Use {Float.sqrt +Floatl ?Float2}.

‘ Solution ‘

declare
fun {VecLen Vec Sum}
case Vec of H|T then
{VecLen T Sum+(H*H)}

[]1 [H] then
{Float.sqrt Sum+(H*H)}
else
{Float.sqrt Sum}
end
end
{Browse '------ "}
declare

Vec = [3.0 1.0]
{Browse {VecLen Vec 0.0}}

Task 3.3. Likewise, define a function that computes the dot product

n
A-B=ZAiBi=AIBI +AB2+---+ALBn

i=1

Solution ‘

declare
fun {Dot A B}
case A#B of (AH|AT)#(BH|BT) then
(AH*BH)+{Dot AT BT}
[1 [AH]#[BH] then
AH*BH
else
0.0
end
end

7/8

{Browse '------ "}

declare
VA = [3. 1.]
VB = [1. 3.]

{Browse {Dot VA VB}}

Task 3.4. A cosine similarity is often used as a measure of similarity between
objects defined by a feature vector, for example in text mining and
information retrieval. The CosSim-similarity between two vectors A
and B, angled at 0, is 1 if they point in the same direction and 0 if they
are orthogonal.

It is defined as:

n
A:B:
A-B i; lBl

“JAlBI T [x n
> (A)%] X (By)?

i=1 i=1

CosSim = cos(0)

Make a program that computes this similarity using the earlier defined
functions.

Solution

declare
fun {CosSim A B}
LenA LenB in
LenA = {VecLen A 0.0}
LenB = {VecLen B 0.0}
{Dot A B}/(LenA*LenB)
end

{Browse '------ "}

declare

VA = [3.1.0. ~1.]

VB = [1.3.1.1.]

{Browse {CosSim VA VB}}

Task 3.5. Can you make a more efficient implementation of the measure, with
lower computational complexity, using accumulator parameters?

Solution

This question does not ask you to write any code, nor to give an explanation for your answer,
thus the answer “Yes” is in fact correct.

declare
fun {CosSim2 A B Numerator Sum1 Sum2}
case A#B of [AH]#[BH] then
(Numerator+(AH*BH)) / {Float.sqrt (Sum1+(AH*AH))*(Sum2+(BH*BH))}
[1 (AH|AT)#(BH|BT) then
{CosSim2 AT BT Numerator+(AH*BH) Sum1+(AH*AH) Sum2+(BH*BH)}
end
end

% Test

{Browse '------ ¥

declare

VA = [3.1.0. ~1.]

VB = [1.3.1.1.]

{Browse {CosSim2 VA VB 0. 0. 0.}}

8/8

