
Norwegian University of Science and Technology

Department of Computer and Information Science

Page 1 of 11

Contact during exam:
Lars Bungum (92046135)

This exam set was approved by Øystein Nytrø

Programming Languages (TDT4165)

December 10th 2013
Tid: 15:00 � 19:00

Exam aids:
Exam aid code C. No (hand)written aids allowed. Only speci�ed, simple calculators.

Short answers are preferred. If �nd assumptions necessary to be made to give your answer,
state these assumptions before you go ahead. All implementations should be done in Oz. Good
luck!

Part 1: Computational Models and Programming Language

Fundamentals (30%)

Problem 1 Accordig to the textbook Concepts, Techniques, and Models of Computer
Programming (CTMCP), programming encompasses the elements

• a model of computation

• a set of programming techniques and design principles

• a set of reasoning techniques

Page 2 of 11

a) What is a computational model?

A computational model is a formal system that de�nes a language and how the sentences of
the language are executed by the abstract machine. This means that both the syntax and
the semantics of the language are de�ned by the computational model.

b) What does it mean that a computational model is declarative? Is the real world declar-
ative? A computational model as explained above, is declarative, if it de�nes a language in
such a way that the programming is done declaratively.

Declarative programs are compositional, the components can be tested and proved to correct
independent of eachother. It is therefore easier to reason about them.

A declarative operation is independent, stateless and deterministic.

c) Explain how the syntax of a programming language can be de�ned.

The syntax can be de�ned by means of a formal grammar, specifying valid expressions in the
language, programs that can be executed.

d) What does a 'kernel language approach' mean? What other translation approaches are
there to de�ne the semantics of a programming language?

A kernel language approach means that a practical programming language is translated into
a kernel language. This language should be easy to reason in. A translation scheme from the
practical language into the kernel language is needed.

Other translation schemes are translation into a foundational calculus or an abstract machine
(p. 41).

e) The kernel language syntax is given in Figure 1

Figure 1: The declarative kernel language

In this �gure there are 8 lines, and the function in each element is (in random order):

Page 3 of 11

a Variable-variable binding

b Empty statement

c Value creation

d Variable creation

e Pattern matching

f Conditional

g Statement sequence

h Procedure application

make the correct mapping between the line from the kernel language syntax and the
letters describing the functions.

Correct mapping given in Figure 2. In tabular form:

1. b

2. g

3. d

4. a

5. c

6. f

7. e

8. h

158

Figure 2: The declarative kernel language

Page 4 of 11

Figure 3: The type hierarchy of the declarative model

f) The type hierarchy of the declarative model in CTMCP is depicted in Figure 3

Explain the di�erence between static and dynamic typing. Which type is used in the
declarative model in Oz?

In static typing all variable types are known at compile time. In dynamic typing, the variable
type is known only when the variable is bound. The declarative model in Oz is dynamically
typed.

g) Explain the relationship between tuples, lists and records in Oz. Illustrate your answer
with code examples.

A record is a data structure consisting of a label followed by a set of pairs of features and
variable identi�ers. Features can be atoms, integers or booleans.

As is seen in Figure 3, lists and tuples are special cases of records. A record can look like

car(windows:3 doors:4)

A tuple is a record whose features are consecutive integeres starting from 1, for example

car(1:X1 2:X)

car(X1 X2)

A list is either the atom nil or the tuple

'|'(H T)

where T is either unbound or bound to a list.

This means that the same list can be expressed in three ways.

Page 5 of 11

L1=[X Y]

L2=X|Y|nil

L3='|'(X '|'(Y nil))

(records with the vertical bar as label).

h) What is the abstract machine? Sketch the components of the abstract machine for the
declarative sequential model, and explain their function.

The abstract machine for the declarative model consists of a stack of semantic operations
and a single-assigment store as illustrated in Figure 4

Figure 4: Components of the abstract machine

i) What happens when the following Oz code is processed by the abstract machine?

l o c a l X in
l o c a l Y in

l o c a l Z in
X = 2

Page 6 of 11

Y = 4
Z = X ∗ Y
{Browse Z}

end
end

end

Show the execution states until completion. What does the code output?

This code will render the following sequence of execution states:

1. ([(< localX... >)], φ)

2. ([(< localY... >), {X → x}], x)
3. ([(< localZ... >), {X → x, Y → y}], x, y)
4. ([(< X = 2.... >), {X → x, Y → y, Z → z}], x, y, z)
5. ([(< X = 2 >), {X → x, Y → y, Z → z}), (< Y = 2 >), {X → x, Y → y, Z →
z}), (< Z = X ∗ Y >), {X → x, Y → y, Z → z})]x, y, z)

6. ([(< BrowseY >), {X → xY → y, Z → z}], x = 2, y = 4, z = 8)

all three variable bindings are done in one step between step 5 and step 6.

j) In what way is an iterative implementation of an algorithm more e�cient than a recursive
implementation? Use the components of the abstract machine in your explanation.

Recursive implementation will put more and more operations on the stack, requiering more
variables to be created and use space in the storage that the itetrative (tail-recursive) imple-
mentations do not

k) The Fibonacci sequence is the integer sequence 0 1 1 2 3 5 8 13 21 34 55 89 144... i.e.
the integer in place n is the sum of the two previous integers where n > 2 where the two
�rst numbers are 0 1.

Write a program that implements an iterative Fibonacci function (a function that returns
the nth Fibonacci number) in Oz and output the 7th number in your program.

Tail-recursive implementation:

fun { I t e r a t i v e F i b N}
fun { F ib N F1 F2}

i f N < 1 then F1 e l s e { F ib (N − 1) F2 (F1 + F2)} end
end

i n
{ F ib N 0 1}

end

Page 7 of 11

Using cells:

fun { F i b I N}
Temp = {NewCel l 0}
A = {NewCel l 0}
B = {NewCel l 1}

i n
f o r I i n 1 . .N do
Temp := @A + @B
A := @B
B := @Temp

end
@A

end

Part 2: Formal Grammars and Parsing (10%)

Problem 2 The Chomsky Hierarchy of formal grammars consists of regular, context-free,
context-sensitive and unrestricted languages. A formal grammar consists of

• A �nite set of production rules

• A �nite set of non-terminal symbols

• A �nite set of terminal symbols

• A start symbol

a) Give an example of a small formal grammar, with the categories above. Use Extended
Backus-Naur Form (EBNF). Can a grammar be a member of more categories in the
Chomsky Hierarchy? If so, why?

Grammars can be members of more categories, as the the categories are subsets of eachother.

regular ⊂ context− free ⊂ context− sensitive ⊂ unrestricted

b) What is the di�erence between regular and context-free grammars? What is the relation
between parsing and a formal grammars place in the hierarchy? What technology is
su�cient to parse regular grammars?

Page 8 of 11

The di�erence is in the right side in the production rules, where the context-free grammars
can have rules that go from a non-terminal to a string consisting of the union of non-terminals
and terminals.

Regular grammars either right-regular or left-regular have production rules that can only go
from one non-terminal to one non-terminal and a terminal, or from a non-terminal to a
terminal symbol. (See lecture 3).

Part 3: Extensions to the Declarative Model(30%)

Problem 3 According to CTMCP, all computational models have their place, summarized
in the following rule:

a) What does it mean that a declarative program is (a) natural and (b) e�cient?

A declarative program is e�cient if it di�ers just by a constant factor from the performance
of an assembly language program to solve the same problem.

A program is natural if very little code is needed for technical reasons unrelated to the problem
you are solving.

b) What are some limitations to the declarative model? Give examples of programs that
would bene�t from being implemented in an extended model.

Programs that do incremental modi�cations of large data structures, can not be compiled
e�ciently.

A program that does memoization can not be programmed without changing its interface.
An accumulator is needed.

A function that implements intricate code (complex algorithms). A stateful implementation
can be easier to write.

c) The Stateful computational model is an extension to the declarative model with explicit
state. Why is this model no longer declarative? Explain what changes are needed to the
abstract machine you sketched above, if any.

A mutable state is needed. The model is no longer declarative, because the explicit states
can have side-e�ects that a�ect how other components of the program are behaving, and
they can not be reasoned about alone.

Page 9 of 11

d) Explain the notion of memoization.

Write a program that consists of a function that memoizes another function and create a
memoized Finbonacci function using this function. Calculate the 7th Fibonacci number
from the memoized Fibonacci function twice. Which calculation will be faster?

You are free to use the Fibonacci function you implemented above in this program if you
like.

Memoization is retaining earlier computations, so that they are looked up in memory rather
than computed again.

A program that memoizes a given function:

d e c l a r e
fun {Memoize Func t i on }

Memo = { D i c t i o n a r y . new} i n
fun {$ Argument}

t r y { D i c t i o n a r y . ge t Memo Argument}
ca tch _ then

Re s u l t = { Func t i on Argument} i n
{ D i c t i o n a r y . put Memo Argument Re s u l t }
Re s u l t end end end

l o c a l MemFib = {Memoize F ib } i n
{Browse {MemFib 666}}
{Browse {MemFib 666}}

end

The second computation is quicker as the value is simply drawn from the dictionary (see
lecture 18).

e) Explain the notion of streams

Write a program that consists of two functions, one generator function that generates
(produces) a stream of integers up to a threshold given as input, and another function
that sums (consumes) the elements in a list. Invoke the two functions in separate threads
like this:

{Browse thread {Sum thread {Generator 50000} end } end}

d e c l a r e
fun { Gene ra to r N}
i f N > 0 then N| { Gene ra to r N−1}
e l s e n i l end

end

Page 10 of 11

l o c a l
fun {Sum1 L A}

case L
o f n i l then A
[] X | Xs then {Sum1 Xs A+X}
end

end
i n fun {Sum L} {Sum1 L 0} end
end

Part 4: Data Abstraction and Object-Oriented Program-

ming (30%)

Problem 4 A data type is a set of values together with a set of operations on these values.
The basic types in Oz were shown above in Figure 3. A data type is abstract (ADT) if it is
de�ned by its set of operations, regardless of the implementation.

a) Is it possible to change the implementation of an ADT without changing its use? Yes,
this is possible (follows from the above de�nition).

b) Data abstractions can be either open or secure, bundled or not, or stateful or stateless,
opening for 8 ways of organizing data abstraction.

Brie�y explain what the three dimensions mean.

open and secure refers to whether the data can be manipulated directly. If something is
implemented as a list, and this list be touched directly? or only by the use of operations
(secure)'

bundled means that the data type is an entity that combines the notion of value and operation

stateful if it uses explicit state.

c) The queue data abstraction is outlined in Figure 5

Write a program that implements a bundled, secure and stateful queue in Oz. Use this
queue in this program to enqueue three numbers (of choice), and dequeue 1.

Page 11 of 11

Figure 5: The queue abstraction enqueues elements in a FIFO manner, the element �rst to be
enqueued is the �rst to be dequeued

fun {Queue}
Content
Front = {NewCel l Content }
Rear = {NewCel l Content } i n
queue (enqueue : p roc {$ Item} NewEnd i n

{Exchange Rear I tem | NewEnd NewEnd} end
dequeue : fun {$} NewStart i n

{Exchange Front $ | NewStart NewStart } end) end

(see lecture 18).

d) Is it possible to do object-oriented programming in a programming language that is not
object-oriented? What is required to do this?

It is possible to implement if the language has necessary elements, like closures.

