
Department of Computer and Information Science

Examination paper for TDT4165 Programming Languages

Grading aid

Academic contact during examination: Lars Bungum

Phone: 9204 6135

Examination date: December 11th, 2014

Examination time (from–to): 09:00–13:00

Permitted examination support material: C: No (hand)written aids allowed. Only specified,
simple calculators.

Other information:
This exam set was approved by Øystein Nytrø.

Language: English

Number of pages: 12

Number pages enclosed: 0

Checked by:

Date Signature

TDT4165 Programming Languages, December 11th, 2014 Page 1 of 12

Part 1: Programming Language Fundamentals (30%)

Problem 1 The difference between declarative and other computational mod-
els is central in the textbook Concepts, Techniques and Models of Computer Pro-
gramming (CTMCP) by Seif Haridi and Peter van Roy.

a) What does it mean that a program component is declarative?

Grading aid A program component is declarative iff it always produces the same output
for the same input. 4

b) What does it mean that a computational model is declarative?

Grading aid A model of computation is declarative iff all programs executed in this
model are guaranteed to be declarative. 4

c) What is a concurrent model of computation?

Grading aid Concurrency lets a program be organized into parts that execute indepen-
dently and interact only when needed. 4

d) Is it possible for a concurrent model of computation to be declarative? If so,
how is this possible? Explain.

Grading aid For a concurrent model to be declarative, it must fulfill exactly one of the
following conditions:

• All executions of the program must have the same result (i.e., logically equivalent)

• All executions must lead to a failure

4

e) What are syntactic sugar and linguistic abstractions? Give examples of them
in Oz showing the difference between code in the practical and the kernel
language.

Page 2 of 12 TDT4165 Programming Languages, December 11th, 2014

Grading aid A linguistic abstraction is an abstraction that introduces an addition to
the language syntax, such as a for or a fun construct.

syntactic sugar are shorthand notations for frequently occurring idioms, such as implicit
variable declarations that are not possible in the kernel language. 4

f) What is the difference between a statement and an expression in Oz? Give
illustrative examples.

Grading aid An expression is syntactic sugar for a sequence of operations that returns
a value. It is different from a statement, which is also a sequence of operations, but
does not return value. An expression can be used inside a statement whenever a value is
needed. For example, 22 ∗ 22 is an expression and X = 22 ∗ 22 is a statement. 4

g) Why do we use syntactic sugar and linguistic abstractions? Explain.

Grading aid It makes programming more easy. Hence the practical language is called
that, because it is more practical. 4

h) What is last call optimization and in what situations is it beneficial?

Grading aid A technique that allows a tail-recursive procedure to return immediately
instead of going back through a sequence of stacked call frames. I.e., the reason tail-
recursion can save space. 4

i) You are contacted by a mathematician specializing in combinatorics whose
calculator is no longer able to compute factorials. Implement a recursive
procedure that computes the factorial of n, i.e., the factorial of 5 = 5 ∗ 4 ∗
3 ∗ 2 ∗ 1 = 120.

Grading aid

de c l a r e
fun { Fac t o r i a l N}

i f N < 2 then 1
e l s e N ∗ { Fac t o r i a l N−1}

end
end

{Browse { Fa c t o r i a l 5}}

4

TDT4165 Programming Languages, December 11th, 2014 Page 3 of 12

j) The mathematician returns. While she is enthused by the ability to cal-
culate large factorials she is exhausted at manually calculating the formula(

n
k

)
(pronounced: n choose k) that select members from a grouping with-

out taking the order of choosing into account and returns their number.
The mathematician generously reminds you of this nice way of calculating
the formula:

(
n
k

)
= n!

k!(n−k)! , so if you have three fruits, apples oranges and
pears, and can choose only two for a snack, you are left with the set of
choices {{apple, orange}, {apple, pear}, {orange, pear}} which can be calcu-
lated with the above formula, i.e., 3∗2∗1

2∗1∗(3−2) = 3.
Implement a function that calculates this number for any n ≥ k where n > 1.

Grading aid

de c l a r e
fun {NoverK N K}

l o c a l Denom = { Fac t o r i a l K} ∗ { Fac t o r i a l N−K} in
{ Int . ’ div ’ { Fa c t o r i a l N} Denom}

end
end
{Browse {NoverK 10 8}}

4

k) You realize that the operator / expects floats while you are dealing with inte-
gers. To demonstrate your programming prowess to the mathematician you
implement integer division for use in the previous question. I.e., implement
integer division in Oz.
(In the event that this is unsuccessful you are allowed to assume there exists
such a function/procedure in the previous question).

l) The mathematician computes larger and larger numbers. You are worried
about the strain this puts on your hardware resources, and realize you need
to implement an iterative version of the factorial function to mitigate this
concern. Implement an iterative version of factorial.

Grading aid

de c l a r e
fun { Fac t o r i a l N}

fun { I t e r a t e I t e r a t o r Result }

Page 4 of 12 TDT4165 Programming Languages, December 11th, 2014

i f I t e r a t o r > N then Result
e l s e { I t e r a t e I t e r a t o r+1 I t e r a t o r ∗Result }
end

end in
{ I t e r a t e 2 1}

end
{Browse { Fa c t o r i a l 5}}

4

m) How are computer programs processed? Sketch the steps that are taken from
a string of characters are input.

Grading aid

• The initial input is linear – it is a sequence of symbols from the alphabet of
characters.

• A lexical analyzer (scanner, lexer, tokenizer) reads the sequence of characters and
outputs a sequence of tokens.

• A parser reads a sequence of tokens and outputs a structured (typically non–linear)
internal representation of the program a syntax tree (parsetree).

• The syntax tree is further processed, e.g., by an interpreter or by a compiler.

4

n) Explain the difference between left-folding and right-folding. Use a higher-
order procedure that does right-folding to compute the sum of the squared
elements of a list.

Grading aid right-folding traverses the lists from left to right and does the combination
backwards, i.e., from right to left.

{Sum [1 2 3]}
== 1 + {Sum [2 3]}
== 1 + (2 + {Sum [3] })
== 1 + (2 + (3))

an implementation of the pattern:

TDT4165 Programming Languages, December 11th, 2014 Page 5 of 12

fun {FoldRight L i s t Nul l Transform Combine}
case L i s t o f n i l then Nul l
[] Head | Ta i l then

{Combine {Transform Head}
{FoldRight Ta i l Nul l Transform Combine}} end end

FoldLeft combines elements as it strips them off from the input list, using Iterate to
implement an iterative process.

fun {FoldLeft L i s t Nul l Transform Combine}
{ I t e r a t e L i s t#Null
fun {$ L i s t#_} L i s t == n i l end
fun {$ (Head | Ta i l)#Result }
Ta i l#{Combine Result {Tranform Head}} end } .2 end

4

Part 2: Formal Grammars and Parsing (20%)

Problem 2

a) What is the Chomsky hierarchy of formal grammars? List the types of gram-
mars, and show for each type what constraints there are on the production
rules.

Grading aid

Noam Chomsky defined four classes of languages:

• Type 0: Unconstrained Languages

• Type 1: Context-Sensitive Languages

• Type 2: Context-Free Languages

• Type 3: Regular Languages

4

Page 6 of 12 TDT4165 Programming Languages, December 11th, 2014

Figure 1: Chomsky Hierarchy

b) Write a small, context-free grammar in EBNF format that is ambiguous.
Show by means of syntax trees that your grammar is indeed ambiguous for
the same input string.

Grading aid

4

c) How does a recursive-descent parser for a grammar work? What is meant
by descent?

Grading aid In computer science, a recursive descent parser is a kind of top-down parser
built from a set of mutually recursive procedures (or a non-recursive equivalent) where
each such procedure usually implements one of the production rules of the grammar.
Thus the structure of the resulting program closely mirrors that of the grammar it
recognizes. 4

d) Consider this simple grammar:
<A> ::= a<A>y | gg
 ::= pq | epsilon

Write a recursive-descent recognizer for this grammar, i.e., a program at
either accepts or does not accept the input string as part of the language
defined by the grammar.

Grading aid

TDT4165 Programming Languages, December 11th, 2014 Page 7 of 12

Figure 2: Ambiguous grammar examples

Page 8 of 12 TDT4165 Programming Languages, December 11th, 2014

l o c a l
fun { InLanguage ? Tokens}

try {A Tokens n i l } catch _ then f a l s e end
end
fun {A Tok RemTok}

case Tok
o f a |RTok then {A RTok y |RemTok}
[] g |RTok then RTok2 in {B RTok g |RTok2} andthen {B RTok2 RemTok}
e l s e f a l s e
end

end
fun {B Tok RemTok}

case Tok
o f p |RTok then {B RTok q |RemTok}
e l s e RemTok = Tok true
end

end
in

{Show {InLanguage ? [a g p q g y] }} %% In s e r t own s t r i n g here !

4

end

Part 3: Extensions to the Declarative Model(30%)

Problem 3

a) What non-declarative models of computation are available in Oz? Why are
they not declarative?

Grading aid

• N Names

• Exception handling and threads

• Explicit state

TDT4165 Programming Languages, December 11th, 2014 Page 9 of 12

Explicit state prevents declarativity. 4

b) What extensions to the Oz’s abstract machine are necessary to facilitate non-
declarative message-passing concurrency with ports? What problems may
arise if we don’t have these extensions to our model?

Grading aid In order to use ports, the abstract machine must be extended with a mu-
table store to keep track of the ports. Using in this non-declarative way allows us to
send more messages to the same port, without having to return a new port object (it is
mutable).

To program everything declaratively, we would have to return new objects all the time in
order to have many threads produce content for the same stream. Having more threads
write to the same stream would lead to unification errors in that case. 4

c) What are implicit and explicit state? Implement quicksort using both of
these methods.
A quick referesher on quicksort. The description from the lecture:

Given a collection of items to be sorted, pick an item (the “pivot”)
and divide the remaining items into those smaller and those larger
than the pivot, quick-sort the two sub-collections, and concatenate
them with the pivot in the middle.

An illustration of the algorithm from Wikipedia is shown in Figure 3.

Grading aid Implicit state:

l o c a l QS in
fun {QS L i s t }

fun { Pa r t i t i on L i s t }
l o c a l P B A T in

P|T = L i s t
B = {Le f t T P}
A = {Right T P}
B#P#A

end
end

in
case L i s t o f n i l then n i l e l s e

l o c a l B P A in

Page 10 of 12 TDT4165 Programming Languages, December 11th, 2014

Figure 3: Example run of quicksort

TDT4165 Programming Languages, December 11th, 2014 Page 11 of 12

B#P#A = {Par t i t i on L i s t }
{Append {QS B} P|{QS A}}

end
end

end
{Browse {QS {Randoms 1000}}}

end

4

d) Why would we want to program with a) mutable and b immutable state?
What are the advantages of both methods?

Grading aid Why would we prefer programming with mutable state to programming
with immutable state?

• Because the underlying machine performs computations with mutable state.

• Because non-declarative implementations tend to be faster than declarative im-
plementations.

• Because most algorithms are explained in terms of updating the state of a data
structure (e.g., an array).

• Because the reality is stateful and modeling with mutable state is often more
appropriate.

Why would we prefer programming with immutable state to programming with mutable
state?

• Because solutions to many problems are more intuitive in the declarative form
than in the non-declarative form; the translation from an abstract algorithm to
an implementation is usually easier in the declarative approach.

• Because declarative programming is safer than non-declarative programming, par-
ticularly in a concurrent environment.

• Because in languages with a high level of abstraction declarative techniques are
often more efficient than explicit operations on mutable state. Of course, the
declarative techniques do use mutable state, but that’s invisible to the programmer
in the end, declarative programming on a stateful machine boils down to obs

4

Page 12 of 12 TDT4165 Programming Languages, December 11th, 2014

Figure 4: Relantional Programming Extensions

Part 4: Relational Programming (20%)

Problem 4

a) What is relational programming, and how does it work? Explain the main
characteristics in a few paragraphs at most.

Grading aid Relational programming is an approach to programming where procedures
are thought of as relations between values, and where no clear distinction between input
and output is made. 4

b) What extensions to the syntax of the declarative model in Oz are needed to
do relational programming?

Grading aid

4

c) Given that you have a solver readily available, write a relational program
that outputs two vectors with three elements, whose dot product sums up to
the parameter x that you give to the function. The dot product is the sum
of the three elements with the same index multiplied with each other, i.e.,
3 ∗ 3 + 3 ∗ 3 + 3 ∗ 3 in the sample below.
Remember that you have to wrap the arguments like in this example:
{Browse { So lveAl l fun {$} { InnerProd 27} end}}
[[3 3 3]#[3 3 3]]

