
Department of Computer and Information Science

Examination paper for TD4165 Programming languages

Grading aid

Academic contact during examination: Øystein Nytrø

Phone: 91897606

Examination date: 2015-12-04

Examination time (from–to): 09.00 − 13.00

Permitted examination support material: C: Specified (nothing) printed and hand-written
support material is allowed. A specific basic calculator is allowed.

Other information:
This exam set is for a course taught in English only: In order to avoid inconsistency and
interpretation problems, only one version exists (this one).

The concurrency problems can be solved in both Scala and Oz. There are NO alternate
language-specific problems. (Risk of misunderstandings.)

The exam set has 4/14 parts/tasks. Every task has the same weight towards the final score.

There is only one correct answer in the multiple choice problems.

Short, succinct answers preferred. Explain necessary assumptions.

Language: English

Number of pages: 9

Number pages enclosed: 0

Checked by:

Date Signature

TDT4165 Programming languages, 2015-12-04 Page 1 of 9

Grading aid The grading aid is not a complete solution! Code answers with many
solutions are not included, only lists of criteria for reviewing the code. 4

Part I Oz and semantics

1) How many of the expressions below are NOT lists?
’|’(one nil)
’|’(1:one 2:nil)
’|’(2:one 1:nil)
’|’(nil one)
’|’(nil nil)
’|’(one ’|’(two nil))
’|’(’|’(one nil) nil)

(a) 1
(b) 2

(c) 3
(d) 4

(e) 5
(f) 0

Grading aid b, ie. 2! There was a superfluous ")" in 6), but it was still a list. To
be fair, answer "c)" scores 4 of 10 p.

{Browse ’#’(
’|’(one nil) = [one]
’|’(1:one 2:nil) = [one]
’|’(2:one 1:nil) = (nil | one)
’|’(nil one) = (nil | one)
’|’(nil nil) = [nil]
’|’(one ’|’(two nil)) = [one two]
’|’(’|’(one nil) nil)) = [[nil]])
}

4

2) Explain the necessary conditions for a variable identifier occurrence to be
bound in the scope of a procedure body. Explain what it means that a
logical variable is not bound to a value. Using the following code, explain
for all variable occurrences what representations it gives rise to in the single
assignment store and the statement stack environment.
local X in

local Y F in
fun {F X} X * Y end

Page 2 of 9 TDT4165 Programming languages, 2015-12-04

Y=3
Z=X+Y
{F Z}

end
end

Grading aid The essential point in this task is to distinguish between identifier
name binding (in a environment/scope) versus value binding (in SAS). An iden-
tifier is bound (occurs in the environment) in a procedure body if occurs in the
scope of a declaration (ie. "local") or is a formal parameter. An identifier corre-
sponding to a logical variable is not bound if the logical variable is not bound to
a value (or to another unbound variable). Ie. in local X Y in X = Y end X and
Y are considered bound (together). Consult section 2.2 for good illustrations!
It was not required to evaluate the expressions in the program and show thes-
tack, environment and SAS in detail. Many detected use of unbound variables,
and commented on program behaviour. This was not asked for. Below are thus
commenting on the statical interpretation of identifiers.

local X in
% Xvar free, Xid bound
local Y F in

% Yvar, Fvar free, Yid,
fun {F X} X * Y end

% newXid bound, Yid free in fun, Fvar bound (to "fun {...")
Y=3
% Yvar bound
Z=X+Y

% (Zid free, from outer space?),
% Yvar bound,
% Xvar unbound will suspend ...
{F Z}
% Fvar bound, Zvar would have been bound if reached, but not possible

end
end

4

3) Given
fun lazy {LMap Xs F}

case Xs of nil then nil
[] X|Xr then {F X}|{LMap Xr F} end

end

TDT4165 Programming languages, 2015-12-04 Page 3 of 9

Does this code work on (i) infinite streams, (ii) only on finite lists, or (iii)
on both finite and infinite streams? Briefly explain. Is the function LMap
defined by this code incremental?
Grading aid It will work on both infinite streams, because evaluation is incre-
mental, producing a result value (only partially bound) on each invocation, and
finite lists, since the end is handled properly. Incremental means that computa-
tion is stepwise, not accumulated and monolithic. Incremental does not preclude
recursiveness. Incremental is not the same as iterative (looping, ie. non-recursive).
(Since the list is recursively built, with an unbound variable at the end, it is a tail
recursive function. But that was not an issue.) 4

Page 4 of 9 TDT4165 Programming languages, 2015-12-04

4) Which statement is correct?

(a) Oz uses dynamic scoping for
identifiers, which is why Oz also
uses dynamic type checking.

(b) Oz uses dynamic scoping for
identifiers, which makes it easy
to predict the values of identi-
fiers.

(c) Oz uses static scoping for identi-
fiers, which makes it impossible

to do static type checking.
(d) Oz uses static scoping for iden-

tifiers, which makes it possible
to statically predict the types of
identifiers.

(e) Oz uses static scoping for iden-
tifiers, which requires it to make
closures for procedure values.

(f) None of the above.

Grading aid e) 4

5) What is the output, if any, of the following code in Oz? Explain!
local P Unk W in

P = person(height: 62 weight: 190 age: Unk) W = 55
case P of building(height: H weight: W age: A)

then {Browse first#H#W#A}
[] person(height: H weight: 190)

then {Browse second#H}
[] person(height: H weight: W age: A)

then {Browse third#H#W#A}
[] person(height: H weight: X age: A)

then {Browse fourth#H#X#A}
else {Browse none}

end
end

Grading aid Running the program prints third#62#190#_ in the browser window.
In the first case, person and building is not not unifiable. In the second case, the
pattern has different number of positions, ie. age is missing. In the third case,
unification succeeds. W is a local variable, and not the same as declared as local
and bound to 55. The rest of the cases are not reached. 4

Part II Language and syntax

Given a partial grammar GE for exponentiation expressions in a programming
language:

TDT4165 Programming languages, 2015-12-04 Page 5 of 9

<Expr> ::= <Expr> ’**’ <Expr> | <Integer>
<Integer> ::= ...

Assume that integers are Oz integers

1) Is the grammar GE ambiguous? Explain why (not). Define associativity and
precedence using exponentiation expressions. Can you rewrite the grammar
into GU so that it becomes easier to parse (and interpret)?
Grading aid The grammar is ambigious, 1 ** 2 ** 3 will give rise to two dif-
ferent parse trees. Associativity for an operator (or set of operators with the
same precedence) determines which of two (or more) productions should be ap-
plied. Selecting the leftmost operator yields left-associativity, and rightmost right-
asssociativity. Precedence determines and application order among production
rules (usually for operators).
A left-associative grammar GLA for exponentiation expressions:

<Expr> ::= <Mexpr> ’**’ <Expr> | <Mexpr>
<Mexpr> ::= <Integer>
<Integer> ::= ...

Precedence is not meaningful with only one operator. A left-associative, and right-
recursive, grammar like GLA lends itself to recursive descent parsing. Factoring

<Expr> ::= <Integer> <Etail>
<Etail> ::= ’**’ <Expr> | epsilon
<Integer> ::= ...

and simplifying yields GU :

<Expr> ::= <Integer> ’**’ <Expr> | <Integer>
<Integer> ::= ...

which is straightforward to implement as a predictive recursive descent parser.

The grammar transformations was intended to be language-preserving. Introduc-
ing parentheses changes the language, and was not a solution to this task. 4

2) Define a grammar GT for Oz-expressions representing the abstract syntax
tree of expressions in GU . Use BNF or EBNF. The trees should be valid
record expressions in Oz.
Grading aid There are many possible ways to represent different versions of GU .
We can do away with the (unique) operator, and just represent the operands in a
binary tree: exp(2 exp(3 4)) represents 2(34). The corresponding GT would be:

Page 6 of 9 TDT4165 Programming languages, 2015-12-04

<Expr> ::= ’exp(’ <Oz integer> <Expr> ’)’ | <Oz integer>

4

3) Write an interpreter in Oz for exponential expressions according to GU .
Grading aid Using G′

U , we can simply write:

declare fun {Evalexp E}
case E of exp(N M)
then {Number.pow N {Evalexp M}}

% Using the infix ’**’ would count as correct also.
[] E then E
end

end

{Browse {Evalexp exp(2 exp(3 4))}}

However, useful exponential expressions should be able to handle parentheses and
subexpressions. But that was not included in GE , so not expected! 4

Part III Concurrency

All the tasks can be solved using either Oz or Scala.

1) Compare sequential and concurrent program execution. What are the key
differences? What are the benefits of concurrency? What are the drawbacks
of concurrency?
Grading aid Review:

1. Differences: Independent processes are most naturally regarded as concur-
rent. Sequentiality introduces arbitrary constraints.

2. Benefits are easier decomposition, clear separation of independent tasks, dis-
tribution, failure tolerance, ease of analysis and run-time control and not
least possibility of parallel execution.

3. Drawbacks are need for synchronisation, arbitrarily difficult timing prob-
lems, race conditions, resource starvation, possible non-determinism, dead-
locks (detection and resolution) and much less ability to "design" interaction.
Testing, debugging and program correctness proofs generally becomes (very)
much more difficult.

4

TDT4165 Programming languages, 2015-12-04 Page 7 of 9

2) What is a deadlock? Explain and give a short code example that may lead
to deadlock. How can you avoid deadlock?
Grading aid Deadlock occurs when two or more processes or activities are mu-
tually waiting for the other to finish or release resources, in a way that prevents
all from finishing. The result of a deadlock is that all processes or activities are
suspended indefinitely. For a deadlock to occur, the following conditions must be
fulfilled: 1) at least one resource is mutually exclusive or not shareable. 2) It is
possible to hold a resource while waiting (indefinitely) for another resource. 3) A
resource can only be released voluntarily by the actor holding it. 4) Actors may
acquire resources and wait for others forming, a circular interdependency.
The code example should exemplify this.

Deadlock can be avoided by avoiding any of these conditions, ie.: Forcing release
of resources if waiting for others, or requiring block allocation of resources. Refine
access to resources according to real need (read/write etc.). Non-blocking pro-
cess analysis and scheduling. Deadlock detection and preemptive resource release.
Avoidance of circular dependencies by partially ordered hierarchies of communi-
cating processes, or fixed order resource allocation. Scala: Use of actors and
futures/promises. 4

3) Implement a concurrent stack (First-in, Last-out) abstract data type. Ex-
plain your underlying representation of the stack. Define and implement
functions push, pop and clear. Explain how you want to handle operations
on empty stacks. What does it mean for an object to always be in a consistent
state? How do you make sure your stack is always consistent?
Grading aid

1. Look for complete functionality and consistency between representation and
implementation.

2. Ensure proper handling of empty stack
3. Look for consistency of internal state.

An object is in a consistent state if all operations on the object assumes that the
object is in a consistent state, operations always result in a consistent state, and
operations are atomic and mutually exclusive.
An implementation of a concurrent stack using LnkedList with synchronized op-
erators could look like:

Class ConStack[T] {
var s = LinkedList()
def clear = synchronized {s.clear()}
def pop: Option[T] = synchronized {s.pop()}

Page 8 of 9 TDT4165 Programming languages, 2015-12-04

def push(v: T) = sycnhronized {s.push(v)}
}

4

4) Wikipedia says:

In computer science, future, promise, and delay refer to constructs
used for synchronization in concurrent programming languages.
They describe an object that acts as a proxy for a result that is
initially unknown, usually because the computation of its value
is yet incomplete. . . . Specifically, when usage is distinguished, a
future is a read-only placeholder view of a variable, while a promise
is a writable, single assignment container which sets the value of
the future.

How are futures and promises realized in Oz or Scala? Explain the drawbacks
and benefits of concurrent code using futures and promises versus code using
explicit synchronization.
Grading aid Futures are realized in Oz by means of logical variables acting as
dataflow variables in combination with Lazy execution. Futures in Scala are asyn-
chronous operations spawned from another process and expecting some value,
and made available either by the spawning process blocking itself, or reacting
upon various callbacks. A future is realized as a wrapper for an integer. A
promise is a single-assignment variable that encapsulates a future object. See
eg. verb!docs.scala-lang.org/overviews/core/futures.html!

The benefit of using futures, or dataflow variables, is that it succinctly represents
an often occurring pattern of asynchronous concurrency (expect a result, but con-
tinue until result is needed). It is often possible to implement very efficiently with
low-level synchronization. 4

Part IV Relational programming

1) Which answer is false?

(a) Relational programming realizes
logic programming.

(b) Relational programming ex-
tends functional programming.

(c) Relational programming re-

quires concurrency.
(d) Logic variables can be used in

functional programming.
(e) Logic variables support declara-

tiveness.

TDT4165 Programming languages, 2015-12-04 Page 9 of 9

Grading aid c) is false 4

2) Define a relation {Consec Ls A B S} that succeeds when in the list Ls, A
and B are adjacent in that order, and the rest of the list is S. See examples:
{Browse {SolveAll proc {$ S} {Consec nil 1 2 S} end}}
> nil
{Browse {SolveAll proc {$ S} {Consec 1|2|nil 1 2 S} end}}
> [nil]
{Browse {SolveAll proc {$ S} {Consec [1 2 3] 1 2 S} end}}
> [[3]]
{Browse {SolveAll proc {$ S} {Consec [7 1 2 3 2 0 1 2 5] 1 2 S} end}}
> [[3 2 0 1 2 5] [5]]
{Browse {SolveAll proc {$ S} {Consec [7 1 2 3 2 0 1 2 5] 1 3 S} end}}
> nil
{Browse {SolveAll proc {$ S} {Consec [3 1 3 1 1] 3 1 S} end}}
> [[3 1 1] [1]]

Grading aid One simple solution, satisfying the above examples, uses the previ-
ously defined relational Append:

proc {Append L1 L2 L3}
choice

L1=nil L3=L2
[] X M1 M3 in

L1=X|M1 L3=X|M3 {Append M1 L2 M3}
end

end

proc {Consec List E1 E2 Rest}
Head in {Append Head E1|E2|Rest List} %Head is just thrown away

end

4

