Norwegian University of Department of Computer
Science and Technology and Information Science
NTNU

TDT 4200 Final Exam)
Parallel Computing
Saturday, Dec. 8, 2012
Time : 09:00 — 13:00

THIS EXAM IS GIVEN IN ENGLISH ONLY
[Oppgavesett for dette faget foreligger kun pa Engelsk,
slik det er beskrevet i Emner-pa-Nett (EpN) |

Instructional contacts during the final
Anne C. Elster, mobil: 981 02 638

ALL ANSWERS NEED TO BE WRITTEN ON THES EXAM SHEETS WHERE
INDICATED AND THESE SHEETS TURNED IN FOR GRADING.

NO EXTRA SHEETS WILL BE GRADED!

Aids [Hjelpemidler] :

One handwritten note sheet with Department stamp and candidate’s name may be used.
It needs to be turned in with the exam (may remove name before turn-in)

Attached “Summary of MPI Routines and Their Arguments” is permitted as written aid.
No other aids, including calculators, are permitted

Grades will be assigned medio January 2012.

It is NOT necessary to justify your answer on true/false questions, unless requested.

Written by: Anne C. Elster Partially Checked by: Ruben Spaans

CANDIDATE NUMBER/Kandidatnr.:

FINAL EXAM — TDT4200 Fall 2012

Candidate no.(kadidatnr)

1. WARM-UPS — TRUE/ FALSE (20 %)

Circle your answers -- Note: You will get a -1% negative score for each wrong
answer and 0 for not answering or circling both TRUE and FALSE.

a)
b)

c)
d)

e)

g)
h)

1))

K)

D

OpenMP is used for programming shared-memory systems

MPI programs may be SPMD

L1 Cache is the fastest memory available

A 4D hypercube has 8 nodes

Large Switch statements may be improved my moving
the most used case last

Domain decompositions is a form of task parallelism
Data locality is a mayor performance challenge

Caching is used to help overcome the memory bottleneck

Reduction operations are not parallelizable

Tail recursion is hard to parallelize

Pthread programs are implemented using compiler directives

OpenMP uses compiler directives

m) Large SIMD programs are especially well-suited for GPUs

n)
0)

GPUs use extensive branch prediction

CUDA threads may access any registers within a given warp

CUDA warps use the SIMD model

CUDA supports global synchronizationccoeeeaeene.

Constant memory in CUDA is read-only from host

OpenCL is generally less verbose than CUDA

OpenCL is closer to OpenMP than thread APIs such as POSIX ...

Page 2 of 14

TRUE/FALSE
TRUE/FALSE
TRUE/FALSE

TRUE/FALSE

TRUE/FALSE

TRUE/FALSE
TRUE/FALSE
TRUE/FALSE
TRUE/FALSE

TRUE/FALSE

TRUE/FALSE
TRUE/FALSE
TRUE/FALSE
TRUE/FALSE

TRUE/FALSE

TRUE/FALSE
TRUE/FALSE
TRUE/FALSE
TRUE/FALSE

TRUE/FALSE

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

2. . PARALLEL COMPUTING BASICS (10%)

a) Let 1= latency and b= bandwidth, n = size. Which formula describes the
message transmission time? (Circle the correct answer)

i) b+ n/l ijb+ln iii)l+n/b iv) Hb/n

b) Amdahl’s Law says if a fraction r of a program isn’t parallelizable, then the
maximum speedup we can get is 1/r regardless of how many
processes/threads/cores we use.

If initialization and I/O takes 5% of the time, what is the best possible speedup?
(I.e. How many cores can we maximally make use of according to this law?)

c) How is Gustafson’s law related to scalability?

d) Efficiency E =n / (p(n/p) +1) = n/ (n+p) for n = problem size and
p = no. of processes.

What is the difference between strongly scalable and weakly scalable in terms of
efficiency?

i) A program is strongly scalable if

ii) A program is weakly scalable if:

iii) Is a program that obtains linear speed-up strongly scalable — Why/Why not?

e) The two main methods for cache coherence are:

i) if))

f) What is a critical section?

Page 3 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

3. MPI (12%)

a)

b)

d)

Suggest one reason why a MPI computation would execute slower on a system
with two processors than on a system with one processor.

Identify one MPI routine that does not use a communicator as an argument.

The main difference between using MPI_Send + MPI_Recv and
MPI_Sendrecv?

MPI_Sendrcv

The difference between MPI_Sendrecv and MPI_Sendrecv_replace is that

MPI_Sendrecv_replace

Why is illegal in MPI to use the same buffer for I/O in MPI_Reduce (i.e. no
aliasing)?

Page 4 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)
3 MPI Continued

f) Below are three snippets from a MPI program, which will be run with two
processes.

Which of them MIGHT cause a deadlock? Briefly explain why.

Snippet

Because:

Snippet A:

int* source = (int*)malloc(sizeof(int) * 1000);
int* dest = (int*)malloc(sizeof(int) * 1000);

int other = (rank + 1) % ; // Rank of other process
... // fill source with values

MPI_Recv(dest, 1000, MPI_INT, other, O, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(source, 1000, MPI_INT, other, O, MPI_COMM_WORLD);

Snippet B:

int* source = (int*)malloc(sizeof(int) * 1000); // assume filled with values
int* dest = (int*)malloc(sizeof(int) * 1000);

int other = (rank + 1) % ; // Rank of other process
... // fill source with values

MPI_Ssend(source, 1000, MPI_INT, other, O, MPI_COMM_WORLD);
MPI_Recv(dest, 1000, MPI_INT, other, O, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Snippet C:

int* source = (int*)malloc(sizeof(int) * 1000); // assume filled with values
int* dest = (int*)malloc(sizeof(int) * 1000);

int other = (rank + 1) % &; // Rank of other process
... // fill source with values

MPI_Send(source, 1000, MPI_INT, other, O, MPI_COMM_WORLD);
MPI_Recv(dest, 1000, MPI_INT, other, O, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Page 5 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

4. OPTIMIZATIONS — (8%)

Short Answer questions -- fill in the blanks (5%)

i)

iii)

What is the difference between a DFT and an FFT?

The DFT

Whereas the FFT

ATLAS is a (circle the one that best fits):
a. mapping program

b. performance analyzer

c. optimized BLAS library

d. optimized C compiler

What advantage does intrinsics offer over autovectorization?

When does it make sense to optimize/remove branches?
(circle ALLthat apply)

a. when the call statement is not matched

b. when the loop can be unrolled

¢. when the conditional branch is executed for the first time

d. for conditional branches that have been executed more than once with
which is frequently mis-predicted and take a significant amount of time

e. Indirect calls and jumps (funtion pointers and jump tabes)

What is the difference between temporal and spatial locality in the context of
caches?

Temporal locality here is

Spatial locality here is

Page 6 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

5. OpenMP (10%)

a) Name at least two differences between a process and a thread:

i)

ii)

b) The following code may be parallelize with OpenMP as shown:

for(inti=0;i<N;i++){
for(intj=1;j <N;j++){
array[i*N + j] = sin(i) + cos(j);

Alteraative A
#pragma omp parallel for
for(inti=0;i<N;i++){
for(intj=1;j < N;j++){
array[i*N +j] = sin(i) + cos(j);

}

Alternative B:
#pragma omp parallel for schedule(dynamic)
for(inti=0;i<N;i++){
for(intj=1;j < N;j++){
array[i*N +j] = sin(i) + cos(j);

}

If the above alternatives are run on a two-core processors, what (approx) speedups willl
these alternatives achieve? Explain why.

i) Alternative A Speedup =

Because

ii) Alternative B Speedup:

Because:

Page 7 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

5. Continued -- More OpenMP

5 ¢) Consider the following code:
#pragma omp parallel for
for(inti=0;1i< 10; i++){
for(int j = 0;j < 10; j++){
array[i] +=buffer[i*10 +j];
arrayl[j] -=buffer[i*10 +j];

}

a) What is a race condition?

b) Explain why the code above has a race condition:

¢) Consider the following attempt at removing the race condition:
#pragma omp parallel for
for(inti=0;i< 10;i++){
for(int j = 0;j < 10; j++){
array[i] +=buffer[i*10 +j];

#pragma omp critical

{
}

array[j] -= buffer[i*10 +j];

Will this solve the problem? Circle answer a. YES b.NO

Page 8 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

6. PThreads (10%)

Consider the following code:

double* pos;
double* vel,

void* updatePosition(void * threadid){
long tid = (Jong)threadid,;

for(int i = tid*500; i < tid* 800 + 500; i++){
pos[i] = pos[i] + vel[i] * O.1;
}
}

int main(){

double pos = (double *)malloc(sizeof(double) * 1000);
double vel = (double *)malloc(sizeof(double) * 1000);
int dummy;

pthread_t threadl, threadg;

for(int i = 0; i < 1000000; i++){
pthread_create(&threadl, NULL, updatePosition, (void*)0);
pthread_create(&thread?, NULL, updatePosition, (void*)1);
pthread_join(threadl, &edummy);
pthread_join(thread?, &edummy);
}
}

a) Why is it slower than it could have been?

b) Change it, to remove this problem, and improve performance.

Extra sheet to use on next page)

Page 9 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

Extra sheet for 6 c), if needed

Page 10 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

7. GPU Programming -- PART 1 (15%)

a) Name two types of overhead for CUDA programs.

i)

b) Name at least two differences between OpenCL and CUDA (other than naming
conventions):

i)

ii

e) The following code is part of a CUDA program that sets some of the pixels of an image
to black (0) on the GPU. Will this program be faster on the GPU than CPU?

i) Circle the right answer: a. YES b. NO

ii) Explain why/why not:

__global__ void kernel(int* image) {
image[blockIdx.x *blockDim.x + threadldx.x * 1000] = O;
}

int main(int arge,char * *argv) {

int* image = (int*)malloc(sizeof(int) * 10000 * 10000);
readImage(image);

int* devicelmage;
cudaMalloc((void* *)8&devicelmage, 10000* 10000 *sizeof(int));

cudaMemcpy(devicelmage, image, 10000* 10000 * sizeof(int),
cudaMemcpyHostToDevice);

kernel<<<10, 10>>>(devicelmage);

cudaMemcpy(image, deviceImage, 10000* 10000 * sizeof(int),
cudaMemcpyHostToDevice);

}

Page 11 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

8. GPU — PART 11 (15%)

a) Why is shared memory faster than global memory on GPUs?

Answer: The shared memory is faster because

b) In the following CUDA kernel, each block of threads will do a lot of processing on a part
of the array "buffer'. Improve the performance of the code by using shared memory by
first loading the part of the array the block accesses into shared memory . Use
the__shared__ double syntax. Remember to store back to global memory.

The size of "buffer" is 1000000. The kernel is launched with 1000 blocks of 1000 threads.
Add in the modifications by hand to the code below (do not use extra sheet).

__8lobal__ void kernel(int* buffer){

int threadId = blockIdx.x *blockDim.x + threadldx.x;

for(int i=0; 1< 1000; i++){
double sumn;

for(int j = 0; j < blockDim.x; j++){

sum += buffer[threadId] - buffer[blockIdx.x*blockDim.x + j];

__syncthreads();

buffer[threadId] *= sum,;

__syncthreads();

Page 12 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)

8. CONTINUED -- GPU PART II
¢) Consider the following CUDA kernel:

__8lobal__ void kernel(int* buffer){
int threadId = blockIdx.x *blockDim.x + threadldx.x;

if(threadId % 4 == 0){
doSomething(buffer);

}

else if(threadld % 4 == 1){
doSomethingElse(buffer);

}

else if(threadld % 4 == 2){
doYetAnotherThing(buffer);

}

else{
doSomethingCompletlyDifferent(buffer);
}
}

i) What is the problem with this code? Why is this a problem?

ii) Outline how you could solve this problem for this specific kernel (in words not code):

Page 13 of 14

FINAL EXAM — TDT4200 Fall 2012 Candidate no.(kadidatnr)
EXTRA PAGE (no other extra page will be graded!)

Page 14 of 14

