BNTNU

Norwegian University of
Science and Technology

Department of Computer & Information Science (IDI)

Examination paper for TDT4200 Parallel Programming

Academic contact during examination: Thomas L. Falch
Phone: +47 472 43 175

Examination date: TUESDAY Nov 29, 2016
Examination time (from-to): 09:00 — 13:00

Permitted examination support material: C — Ett stemplet ark med handskrevne
notater (leveres inn sammen med besvarelsen) samt vedlagte supplerende
informasjonsark.

ONE STAMPED SHEET WITH HANDWRITTEN NOTES (TO BE TURNED IN WITH
THIS EXAM) AND ENCLOSED SUPPPLEMENTARY INFORMATION

Other information:

Alle svar innferes, som angitt, pa vedlagte ark /

All answers need to be submitted on the attached sheets as indicated.
Language: ENGLISH

Number of pages (front page excluded): 15 Created by:
Number of pages enclosed: 15 %y g P
S %A
/// i p?%/; / i
Date Signature
Informasjon om trykking av eksamensoppgave
Originalen er: Checked by:
1-sidig X 2-sidig O)
[/ !
O o i
sort/hvit X farger O 0(5///1\/ b, (%"(«ﬂ L7
skal ha flervalgskjema OO | Date Signature

Page 10f 15 TDT4200 FINAL EXAM 2016 Candidate no.:

1. WARM-UPS — TRUE/FALSE (20%)

Indicate the correct answer with a clear “X” in the appropriate column.
It is NOT necessary to justify your answers on TRUE/FALSE questions, unless requested.

NOTE: You will get a -1% negative score for each wrong answer and 0 for not
answering or answering both TRUE and FALSE.

No. | Question TRUE | FALSE

a) | An efficient parallel implementation of a serial program is found
by finding an efficient implementation of each step of the serial
program

b) | Separation of memory and CPU is often called the von Neumann
bottleneck

¢) | Caching may provide superlinear speed-ups

d) | The most common cache eviction policy is Least Recently Used

e) | Flynn’s taxonomy includes SIMD and MIMD

f) | Multi-threading is considered a coarse-grained parallelism

g) | Strongly scalable programs always improve performance with no.
of cores/processors.

h) | Weakly scalable programs follow Gustavson’s Law

i) Elster’s Bit-Reversal algorithm is O (N log N)

i) | Snooping cache coherence takes advantage of bus architectures

k) | One-sided communication is different from remote memory
access _

)] AmdahPs law says that if a fraction r of a serial program remains
serial, then we cannot get a better speed-up than 1/r. This means
we MUST resort to task parallelism in order to be able to scale
further.

m) | MPI_Broadcast does not need tags

n) | MPI_Reduce may use the same buffer for both input and output

0) | CUDA is less verbose than OpenCL, but OpenCL is offered on a
wider selection of devices. '

p) | CUDA warps may be synchronized

q) | CUDA uses sychthreads() to synchronize across SMs

Y) | The OpenCL-equivalent of a CUDA warp is called team

s) | Coalescing memory on GPUs improves efficiency by using strided
memory locations

t) Some recent CUDA devices give you the option to trade-off
amount of shared memory with caching.

Page 2 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

2. PARALLEL COMPUTING BASICS (10%)

2a) What are the two main differences between threads and processes?

Threads:

Processes:

2b) Instruction Level Parallelism (ILP) attempts to improve processor
performance by utilizing several functional units simultaneously. Explain the
difference between the two main approaches to IPL:

Pipelining

Multiple Issue

2¢) What can be done to overcome Amdahl’s Law (hint: Gustavson’s law)?

2d) What is one-sided communication in the context of distributed memory computing?

2¢) If Speedup S = Tserial / T parallel, and P is the number of processors, then what is
the formula for Efficiency?

E= Tserial

2f) MP1Lis considered (circle one) I) SIMT II) SIMD III) MIMD 1IV)SPMD

Explain the above acronym chosen:

2 g) When can you use OpenMPI, but not OpenMP?

Page 3 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

3. Multiple Choice (one or more may be correct) and Short answer (14%)

3a) CUDA: Consider the following code snippets, which are part of CUDA kernels,
where n threads each read n values from an n x n array. Which will be faster?
(Circle answer)

D int sum = 0; IIT) They are the same
for(int 1 = 0; 1 < n; i++){
sum += arrayl[i*n + thread id];

}
1D int sum = 0;
for(int 1 = 0; 1 < n; i++){
sum += array([n*thread id + i];
}
3b) Circle the following schemes that protect access to critical sections:

I) Semaphores TII) Do-while loops

II) Mutex Locks IV) Busy-waiting

3¢) What is the main advantage of read-write locks?

3d) Which of the following schemes are used to reduce branching?

D Hoisting most frequent case to top or out in separate if-statement
1) Removing branches with labels

III) Removing branches with masks

IV) Memory coalescing (GPUs)

V) Memory striding

VI) All of the above

Page 4 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

3e) For each of the following code snippets, determine if the access pattern exhibits
spatial locality, temporal locality, both, or neither. Circle accordingly. (a, b and ¢ are in
all cases appropriately sized int arrays):

I) for(int i = 0; i < 10000; i++){ Spatial / Temporal
a[i] = b[i] + c[il;
}
II) for(int i = 0; i < 100; i++){ Spatial / Temporal
for(int j = 0; j < 100; j++){
aljl = bljl + cl3l:;
}
}
III) for(int i = 0; i < 100; i++){ Spatial/ Temporal
for(j = 0; 3 < 10; j++){
a[j*1000] += b[j * 2000] + c[j * 3000];
}
}

3f) What is thread divergence (hint: GPU)?

3g) Which of the following code snippets will (if executed on a GPU) cause branch
divergence? (Circle YES if they do, NO otherwise)

I) if(blockIdx.x > 16){

foo() ;
}
elsef
bar() ; : YES / NO
}
II) if(threadIdx.x > 16){
foo () ; YES / NO
}
else{
bar () ;
}
c) for(int i = 0; i < threadIdx.x; i++){ YES / NO
foo();

}

Page 5 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

4, More on MPI (6%)

4 a) Consider the following code, where each rank sends a value to two other ranks, and
receives a value from two other ranks. The two ranks that each rank should communicate

with, are stored in the variables n1 and n2, and are arbitrary, and specified by the user at
runtime.

MPI Send(data_sendl, N, MPI INT, nl, O, MPI COMM WORLD) ;

MPI Recv(data rcvl, N, MPI_INT, nl, 0, MPI_COMM WORLD,
MPI_STATUS_IGNORE) ;

MPI_ Send(data_send2, N, MPI_INT, n2, O, MPI COMM WORLD);

MPI_Recv(data_rcv2, N, MPI_INT, n2, 0, MPI COMM WORLD,
MPI_STATUS_IGNORE) ;

Can this code potentially cause a deadlock? Circle YES / NO

4 b) If you circled YES to the question above, rewrite the code so that it will never
deadlock, using the following MPI functions. Not all the listed functions may be
required/are relevant.

Do not use any other MPI functions, but the ones listed below.
int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)
int MPI_Wait (MPI_Request *request, MPI_Status *status)

int MPI Isend(void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm, MPI_Request *request)

int MPI Irecv(void *buf, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Request *request)

int MPI Issend(void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm, MPI_Request *request)

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_ Datatype sendtype, int
dest, int sendtag, void *recvbuf, int recvcount, MPI Datatype recvtype, int
source, int recvtag, MPI_Comm comm, MPI_Status *status)

Page 6 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

4b) contin: Repeating code to re-write and leaving space for re-write:
MPI_Send(data_sendl, N, MPI_INT, nl, 0, MPI_COMM WORLD) ;

MPI_Recv(data_rcvl, N, MPI_INT, nl, 0, MPI COMM WORLD,
MPI_STATUS_IGNORE) ;

MPI_Send(data_send2, N, MPI_INT, n2, 0, MPI_COMM WORLD);

MPI_Recv (data_rcv2, N, MPI INT, n2, O, MPI COMM WORLD,
MPI_STATUS_IGNORE);

and leaving space for re-write using only the functions listed on the previous page:

Page 7 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

4 ¢) Consider the following lines, extracted from an MPI program:
int* array = malloc{sizeof(int) * M * N);

for(int 1 = 0; i < M; i++){
array[i*N + 2] = 10;

MPI Datatype new_type;

MPI_Type vector ()i

MPI_Send(array, 1, new_type, dest, tag, MPI COMM WORLD) ;

Complete the code above by filling in the arguments to MPI_Type_vector above, so that
the MPI_Send will send all the elements set to 10 by the for loop. The definition of
MPI_Type_vector is:

int MPI_Type vector(int count, int blocklength, int stride, MPI Datatype
old_type, MPI_Datatype *newtype p);

5. OpenMP (5%)
Consider the following code, which computes the sum of the elements in an array:

int sum = 0;
for(int 4 = 0; i < N; i++){
sum += arrayl[i]:;

}

Show how the code can be parallelized using OpenMP. The resulting code should achieve

good parallel speedup. The following OpenMP directives and functions can be useful:
structured-block
clause:

Useful OpenMP directives and functions:

#pragma omp parallel [clause[[,]clause] ...]
if (scalar—expression)
num threads (integer—-expression)
default (shared | none)
private (list)
firstprivate (list)
shared(list)

Page 8 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

copyin(list)
reduction{reduction-identifier: 1list)
proc bind(master | close | spread)

#pragma omp for [clause[[, Jclause] ...]
for-loops
clause:

private (list)

firstprivate(list)

lastprivate (list)

reduction (reduction-identifier: list)
schedule (kind[, chunk size])
collapse (n)

ordered

nowait

¥pragma omp parallel for [clause{ [,]Jclause] ...]
for-loop

clause: Any accepted by the parallel or for directives,
except the nowait clause, with identical meanings and

restrictions.

#pragma omp single [clause[[,]Jclausel ...]
structured-block
clause:
private (list)
firstprivate (list)
copyprivate (list)
nowait

#pragma omp critical [(name)]
structured-block
#pragma omp atomic [read | write | update | capture]

expression-stmt

int omp get num threads(void);
int omp get thread num(void);

Page 9 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

5 CONTINUED: Show below how the code for summing the elements of an array shown
earlier can be parallelized using OpenMP. The resulting code should achieve good
parallel speedup: (See previous page for useful OpenMP functions)

Page 10 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

6. Pthreads (6%)

For each of the following code snippets, determine if it will cause a deadlock if executed
by more than 3 threads in parallel. Thread id is an integer storing the id of the thread which
is a unique number between 1 and the total number of threads.

a) The following (circle) MAY / MAY NOT deadlock with >3 threads:

if (thread_id % 2 == 0){
pthread mutex_ lock({&mutex a);
pthread mutex lock({&mutex b);
at+; B B
bt++;
pthread mutex unlock(&mutex b);
pthread mutex unlock(&mutex a);

else(
pthread mutex lock(smutex b);
pthread mutex lock(&mutex a):
at+; - - -
b++;
pthread _mutex unlock(&mutex_a);
pthread mutex unlock(&mutex b);

6 b) The following (circle) MAY / MAY NOT deadlock with >3 threads:

if(thread id % 2 == 0){
pthread mutex lock(&mutex a);
pthread mutex lock(&mutex b);
a++;
b++;
pthread mutex unlock(amutex a);
pthread mutex unlock(&mutex b);

else{
pthread mutex lock(&mutex a);
pthread mutex lock(&mutex b);
at+; B B
b++;
pthread mutex unlock(&mutex_a);
pthread mutex unlock(&mutex b);

6c) The following (circle) MAY / MAY NOT deadlock with >3 threads:

if(thread id % 3 == 0){
pthread mutex lock{&mutex a);
pthread mutex lock(smutex c);
at++;
ct++;
pthread mutex unlock(&mutex_c);
pthread_mutex unlock(&mutex_a);

Page 11 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

}

else if (thread id % 3 == 1){
pthread mutex lock(&mutex b);
pthread mutex lock{&mutex a};
a++;
b++;
pthread mutex unlock(&mutex a);
pthread mutex unlock(&mutex b);

else(
pthread mutex lock(&mutex c);
pthread mutex lock(&mutex b);
c++;
b++;
pthread mutex unlock(&mutex b);
pthread mutex unlock(&mutex_c);

}
7. OpenCL —4%

Consider the following OpenCL kernel:

__kernel work()
int x = get _global id(0);
int y = get global id(1l);

Which is launched like this:
size t global_work size[Z2];
global work size[0] = 1024; global work size[l] = 1024;

size t local_work sizel[2];
local work size[0] = m; local work size[l] = n;

clEngueueNDRangeKernel (queue, kernel, 2, NULL,
global work size, local_ work size, 0, NULL, NULL);

Which of the following values should be used for n and m to minimize divergence when
the code is executed on an NVIDIA GPU? (Circle the correct answer.)

D n=4m=16 Mn=32,m=4

IDn=8 m=38 IV)n=4,m=32

Page 12 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

8. CUDA -10%

In this problem we will look at a CUDA program which computes the average of
neighbor elements in an array. In particular, it should perform the following
computation on the GPU:

out[0] = 0;

out[n-1] = 0O;

for(int i = 1; I < n-1; i++)}{

out[i] = (in[i] + in[i+1] + in[i-1]1) / 3.0;

}

Thus, if the input is the array [2,3,1,5] the output should be [0,2,3,0], since i.e. (3+1+5)/3 =3.
The elements at the start and end of the output array are set to 0.

In the code given below, the size of the arrays, N, is an arbitrary number larger than 64. The

thread block size (i.e. the number of threads in a thread block) is hard coded to be 64. Shared
memory is used in an attempt to improve performance, in a similar manner to the way it was
done in assignment 6.

The code contains at least 1, and no more than 5 bugs (i.e. 1, 2, 3, 4, or 5 bugs). None of the
bugs are syntax errors, i.e. the code will compile without problem, but will crash or produce
incorrect results when executed. Ignore problems/bugs related to poor performance, or not
freeing memory. The bugs can be in both the device code (i.e. in the kernel) or in the host
code, launching the kernel.

Each bug can be fixed by either:

e Changing a single line.
o Removing a single line, and adding a new line somewhere else.

The code is printed with double line spacing. Correct the bugs by striking out the
incorrect lines, and add the corrected version below it, or by striking out a line and
adding a new line somewhere else.

Note that in three cases, for the two cudaMalloc calls, and for the final assignment to the

out array, one line of code is printed across two lines, but is still regarded as a single line
when counting the number of bugs.

__global _ void average(float* in, float* out, int N){

int index = threadldx.x + blockDim.x*blocklIdx.x;

int lindex = threadldx.x;

Page 13 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

_.shared float shared array[66];

if(index < N){
shared array[index] = in[index];
if(lindex == 0 && index != 0){
shared array[0] = in[index-1];

}

if(lindex == 63 && index != N-1){

shared array[65] = in[index + 1];

}

__syncthreads() ;

if (index == |l index == N-1) {
out [index] = 0;
}

else if(index < N){

out[index] = (shared array[lindex-1] +

shared array[lindex] + shared array[lindex + 11)/3.

0f;

Page 14 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

}

}// Continues on next page
float* func(int N) {

float* in host = (float*)malloc(sizeof (float) * N);

float* out host = (float*)malloc(sizeof(float)* N);

float* in dev;

float* out dev;

cudaMalloc ((void**) &in dev, sizeof (float)*N);

cudaMalloc ((void**) &out_dev, sizeof (float)*N);

fill input(in host);

cudaMemcpy (in_dev, in host, sizeof (float)*N,
cudaMemcpyHostToDevice) ;

int nBlocks = N/64;
1f(N % 64 !'= 0){
N++;

}

average<<<nBlocks, 64>>>(in dev, out_dev, N);

cudaMemcpy (out _host, out _dev, sizeof(float)*N,
cudaMemcpyDeviceToHost) ;

return out host;

Page 15 of 15 TDT4200 FINAL EXAM 2016 Candidate no.:

EXTRA PAGE, IF NEEDED. PLEASE INDICATE CLEARLY WHICH PROBLEM you
are answering here, if any. May also be used as scratch paper.

