
TDT4200-EXAM-F2022

1/22

 Front Page / Forside
Front Page -- See attached PDF

1 Performance - T/F
Processor speed is more important than data locality with respect to performance
Select an alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

2 Fastest memory - T/F
L1 cache is the fastest memory available on Intel processors
Select an alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

3 Caches T/F
There are generally fewer conflict misses in a set-associative cache than a direct-mapped
cache.
Select one alternative (-0.5 for wrong answer):

False

True

Maximum marks: 1

4 Heap T/F
The heap is used to keep track of active function parameters
Select one alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

TDT4200-EXAM-F2022

2/22

5 Superscalar - T/F
Superscalar performance is typically due to caching
Select an alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

6 Amdahl´s Law T/F
Amdahl's Law is named after Gene Amdahl in the 1960s who observed that the serial parts
quickly dominate the execution times when parallelising codes. For instance, if the serial part of
the code takes 10% of the time, Amdahl's Law tells you that

 for

and .

As p gets larger, the Speedup approaches 20/2 = 10, even for many thousands of cores!

In general. if a fraction r of our serial program remains unparallizable, Amdahl´s Law state
that we cannot get a better speedup that 1/r!

Thus, if the serial part of our program takes only 5 % of the time, the max speed-up is 20.
Select one alternative (2 pts for correct answer, -1 for wrong):

True

False

Maximum marks: 2

7 FFT & Bit-rev. - T/F
Both the FFT and Elster's Bit-reversal algorithm are O (N log N)
Select an alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

8 Switch stmt -- T/F
When optimizing a switch statement for best performance one should sort the statements in
ascending (increasing) order with the amount of time they take to compute.
Select one alternative (-0.5 pts for wrong answer)

True

False

Maximum marks: 1

TDT4200-EXAM-F2022

3/22

9 Global Sum T/F
Parallelizing a global a sum is often done in a tree structure, especially on hypercubes.
Select one alternative (-0.5 for wrong answer) :

True

False

Maximum marks: 1

10 MPI basic -- T/F
MPI programs are Single Program Multiple Data (SPMD) rather than SIMD or MIMD (Flynn's
Taxonomy)
Select an alternative (-0.5 for wrong answer) :

True

False

Maximum marks: 1

11 MPI derived datatype - T/F
MPI_Type_create_struct is used to build an MPI derived datatype
Select one alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

12 MPI Collectives & tags - T/F
MPI collectives may use tags
Select an alternative (-0.5 for wrong answer):

False

True

Maximum marks: 1

13 Branching - T/F
Branching may lead to performance issues on both CPUs and GPUs
Select an alternative (-0.5 for wrong answer) :

True

False

Maximum marks: 1

TDT4200-EXAM-F2022

4/22

14 Pthread mutex - T/F
Variables of type pthread_mutex_t need to be initialized by the system before they are used
Select one alternative (-0.5 for wrong answer):

False

True

Maximum marks: 1

15 Thread safety of strtok T/F
The C string library function strtok splits an input string into substrings. It can be called
recursively. Implementing it by using a static char* variable that refers to the string that was
passed on the first call, is thread safe.
Select one alternative (-0.5 for wrong answer) :

True

False

Maximum marks: 1

16 CUDA Warps - T/F
CUDA Warps use the SIMT/SIMD model
Select an alternative (-0.5 pts for wrong answer)

True

False

Maximum marks: 1

17 CUDA thread block T/F
A CUDA thread block may be distributed across several SMs.
Select one alternative (-0.5 for wrong answer) :

False

True

Maximum marks: 1

TDT4200-EXAM-F2022

5/22

18 CUDA - Register spilling - T/F
Since an SM may be able to run more than one warp at the same time, performance overall may
improve despite register spilling affecting single thread´s performance.
Select one alternative (-0.5 pts for wrong answer) :

False

True

Maximum marks: 1

19 HIP and OpenCL
HIP and OpenCL can both be used on systems with AMD GPUs. CUDA is closer to HIP than
OpenCL.
Select one alternative (-0.5 for wrong answer):

True

False

Maximum marks: 1

20 Comments to T/F questions
If you find one or more of the questions from this section vagues, you may explain one or more
of your T/F answers below. Make sure to refer to the T/F problem´s title. We may or may not
consider these explainations.
Reminder: Use of Google, ChatGTP or similar tools are not allowed during this exam.

Format

 Σ

Words: 0

Maximum marks: 10

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')

TDT4200-EXAM-F2022

6/22

21 MPI - Make efficient
How would you make the code below more efficient?

```c 

int rank, comm_size; 

MPI_Comm_rank ( MPI_COMM_WORLD, &rank ); 

MPI_Comm_size ( MPI_COMM_WORLD, &comm_size ); 

double data; 

if ( rank == 0 ) { 

 data = 3.14; 

 for ( int i = 1; i < comm_size; ) { 

  MPI_Send ( &data, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD ); 

 } 

} else { 

 MPI_Recv ( &data, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE ); 

}

Fill in your answer here by giving showing a more efficient code + explaination.

 

Format                 

         Σ  

 

Words: 0

Maximum marks: 6

22 MPI - What is wrong?
### What is wrong in this code snippet from an MPI program that tries  

### to broadcast from rank 0 to all other processes? 

int rank; 

MPI_Comm_rank ( MPI_COMM_WORLD, &rank ); 

int data = 0; 

if ( rank == 0 ) { 

 data = 3; 

 MPI_Bcast ( &data, 1, MPI_INT, 0, MPI_COMM_WORLD ); 

}

Fill in your answer here

Words: 0/50
 

Maximum marks: 5

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

7/22

23 Describe MPI error
### What is the error in this code snippet from an MPI program? 

int rank; 

MPI_Comm_rank ( MPI_COMM_WORLD, &rank ); 

float data; 

if ( rank == 0 ) { 

 data = 50.5; 

 MPI_Send ( &data, 1, MPI_FLOAT, 1, MPI_ANY_TAG, MPI_COMM_WORLD ); 

} else if ( rank == 1 ) { 

 MPI_Recv ( &data, 1, MPI_FLOAT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE ); 

}

Fill in your answer here

 

Format                 

         Σ  

 

Words: 0

Maximum marks: 4

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

8/22

24 MPI_Cart_shift
The following unfinished MPI code should initialise a cartesian communicator and retrieve
information about the position and neighbors of each rank.
 
Fill in the blanks so that:

The cartesian communicator cart is periodic in the x axis.
The variables north, south, west, and east are set to the rank of the north, south, west, and
east neighbours respectively.

The signature for MPI_Cart_shift:
MPI_Cart_shift( MPI_Comm communicator, int direction, int displacement, int *source, int
*destination);
 

#include <mpi.h> 

int main ( int argc, char** argv ) 

{ 

 MPI_Comm cart; 

    int rank, comm_size; 

 int dims[2] = {0, 0} 

 int periodic[2], coords[2]; 

 int north, south, west, east; 

 MPI_Init ( &argc, &argv ); 

 MPI_Comm_size ( MPI_COMM_WORLD, &comm_size ); 

 MPI_Dims_create ( comm_size, 2, dims ); 

 periodic[0] = _; // Fill in the blank 

 periodic[1] = _; // Fill in the blank 

 MPI_Cart_create ( MPI_COMM_WORLD, 2, dims, periodic, 0, &cart ); 

 MPI_Cart_shift ( cart, _, _, _, _ ); // Fill in the blank 

 MPI_Cart_shift ( cart, _, _, _, _ ); // Fill in the blank 

    MPI_Comm_rank ( cart, &rank ); 

    MPI_Cart_coords ( cart, rank, 2, coords ); 

 ... 

  

 MPI_Finalize(); 

 return 0 

} 

periodic[0] = 

periodic[1] = 

MPI_Cart_shift( cart,  ,  , 

 ,   );

MPI_Cart_shift( cart,  ,  , 

 ,  );

(0)

(1)

(0) (1)

(&north) (&south)

(1) (1)

(&west) (&east)

Maximum marks: 10



TDT4200-EXAM-F2022

9/22

25 MPI Deadlock?
#include <mpi.h> 

int main ( int argc, char** argv ) 

{ 

 ... 

  

 int recv_buffer[40]; 

 int send_buffer[10]; 

 for ( int i = 0; i < 10; i++ ) { 

  send_buffer[i] = i; 

 } 

 if ( coords[0] != 0 ) { 

  MPI_Sendrecv ( send_buffer, 10, MPI_INT, north, 0, &recv_buffer[0], 10, MPI_INT, north, 0, cart, MP

 } 

  MPI_Sendrecv ( send_buffer, 10, MPI_INT, south, 0, &recv_buffer[10], 10, MPI_INT, south, 0, cart, M

 if ( coords[1] != 0 ) { 

  MPI_Sendrecv ( send_buffer, 10, MPI_INT, west, 0, &recv_buffer[20], 10, MPI_INT, west, 0, cart, MPI

    } 

 MPI_Sendrecv ( send_buffer, 10, MPI_INT, east, 0, &recv_buffer[30], 10, MPI_INT, east, 0, cart, MPI_STATUS_

 ... 

}

 
Assume the cartesian communicator is set up as described in the MPI_Cart-Shift problem.
Above is code for the processes to communicate with their immediate neighbours.
 
Will this code lead to a deadlock? Why/why not? State your assumptions. Fill in your
answers here:

 
 
 
 
 

Format                 

         Σ  

 

Words: 0

Maximum marks: 5

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

10/22

26 (8%) OpenMP
(2%) In OpenMP there is no guarantee of fairness in mutual exclusion constructs. This means
that it's possible that a thread can be blocked forever when using a #pragma omp critical inside a
while loop.
 
Select an alternative

 
(2%) OpenMP threads share stack and program counter
Select an alternative

 
 
(2%) False sharing occurs when threads use data in the same cache line, but do not use the
same variable when accessing the data, so that the behaviour of the thread with respect to
memory access is the same as if there were sharing a variable.
 
 How can false sharing be avoided during matrix-vector multiplication?
 
Select one alternative

 
 
(2%) Why does the following code exhibit poor performance on 4 or more cores?
 
#pragma omp parallel for shared(a,b,sum) private(I,tmp) 
for (i = 0; i < n; i++) { 
  tmp = a[i] * b[i]; 
  #pragma omp atomic 
  sum = sum + tmp; 
} 
Select one alternative

True

False

False

True

It is not possible to avoid false sharing when doing matrix multiplication in OpenMP

Have each thread use private storage during multiplication loop, then update shared
storage when done

Make sure the resulting y vector is small enough

Avoid padding the resulting y vector.

synchronisation need to be added

#pragma omp for needs to use global tmp

#pragma atomic serialises the summation

4 cores are too many for parallelising global sums

Maximum marks: 8



TDT4200-EXAM-F2022

11/22

27 (3%) Parallel prog.
Writing efficient parallel programs usually involve
Select one or more alternatives:

 

load balancing

synchronisation of the cores

coordinating the work of the cores

communications among the cores

Maximum marks: 3

28 (2%) Looping and efficiency
Given an array defined as double m[2048][2048] and the following two snippets of code: 
1) 
for(i=0; i<2048; i++) 
       for(j=0; j<2048; j++) { 
                double value = m[i][j]; // do some calculations with value 
}
2) 
for(j=0; j<2048; j++) 
       for(i=0; i<2048; i++) { 
            double value = m[i][j]; // do some calculations with value 
}
That is, the order of the two for loops are reversed.
 
Weight: 2% (-0.5% for wrong answer)
Which is the most efficient option?

 

1

2

They are equally efficient

Maximum marks: 2

29 (2%) Latency & Bandwidth
What is the difference between Latency and Bandwidth?
Select one alternative:

 

a) Latency reflects how long the total communication is, whereas bandwidth the
communication rate

b) Latency reflects that time elapsing between a source starting to send data until the data
starts arriving at destination, whereas bandwidth is the rate which a link can transmit data

c) Latency is how long it takes before the message is ready to be sent, whereas bandwidth
is how long it takes to send the message

a) and b) above

Maximum marks: 2



TDT4200-EXAM-F2022

12/22

30 (2%) Elster´s Algorithm
One or more of the following is true for Elster´s Algorithm
Select one or more alternatives that are TRUE regarding Elster´s algorithm:

 

Uses doubly nested loops

O(N) with a high scaling factor due to complexity

Loop controls can be done with shift operations

May have tail recursion

Linear with a low scaling factor

O(N log N)

Maximum marks: 2

31 PageRank
Larry Page and Sergey Brin developed PageRank at Stanford University in 1996 as part of a
research project about a new kind of search engine. They later founded a company.
 
What was the name of the company?
 
The mathematics of PageRank are entirely general and apply to any graph or network in any
domain. The eigenvalue problem behind PageRank's algorithm was independently rediscovered
and reused in many scoring problems. 
 
 Mention at least two other use of PageRank (other than for search engines) and why
parallelzing PageRank may or may not be important for that application.
 
Fill in your answer here

 

Format                 

         Σ  

 

Words: 0

Maximum marks: 4

https://en.wikipedia.org/wiki/Sergey_Brin
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Eigenvalue
javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

13/22

32 PageRank and Cilk
Cilk, like OpenMP is a general purpuse paralle programming language that is based on C/C++
that allows for multithreading. OpenCilk 2.0 was released in July 2022.
 
In the following PageRank code, the variables contribution and rank are arrays of doubles, and
in_degree and out_degree are arrays of integers. neighbor is a two dimensional array that stores
the edges. neighbor[i][j] is the jth neighbor of the ith node.

For each of the following code modifications designed to improve performance, select the
appropriate option to specify whether it is safe to make the indicated change, whether it is safe if
a reducer is used, or whether it is unsafe. Note: “safe” means that the output must be exactly
the same as for the original code. You also get negative scores (-1.5/2) for each wrong
answer.
 
A document describing cilk_for is provided under PDF-dokument, but should not be need to
answer correctly.
 
Replacing the for in line 4 with cilk_for is
Select one alternative

 
Replacing the for in line 6 with cilk_for is
Select one alternative

Replacing the for in line 10 with cilk_for is
Select one alternative:

 

Safe

Unsafe

Safe

Unsafe

Safe

Unsafe

Only safe with reducer

Maximum marks: 6



TDT4200-EXAM-F2022

14/22

33 CUDA Programming: Grayscale Image Convolution

The blur function given in the attached PDF iterates over a GrayscaleImage and updates the
intensity values of each pixel with the average of itself and its eight neighbors.

 
A picture before and after blurring the image over 20 iterations can be seen in the illustration:
 
Each pixel is an unsigned char with values ranging from 0 (black) to 255 (white).
Rewrite the blur function into a CUDA kernel named blur_gpu.
 
It should:
- Be callable from host
- Process exactly one pixel per thread.
 

 

Maximum marks: 10

1



TDT4200-EXAM-F2022

15/22

34 Grayscale Blur: CUDA Grid Calculation
Assume thread block dimensions of . Which of the following alternatives will calculate
a grid size that is guaranteed to process the entire image of size width x height?  Select at most
three alternatives. You will also be given a negative point for each wrong answer.
Select one or more alternatives:

 

{ floor( (float) width / 32.0f, floor( (float) height / 32.0f, 1 }

{ ceil ( (float) width / 32.0f ), ceil( (float) height / 32.0f, 1 }

{ width / 32, height / 32, 1 }

{ width / 32 + 1, height / 32 + 1, 1 }

{ ceil(width / 32), ceil(height / 32), 1 }

Maximum marks: 3

35 Grayscale Blur: Grid Size Efficiency
Consider the previous question (Grayscale Blur: CUDA Grid Calculation).
Of the alternatives you picked, which method is the most efficient?
State the alternative and describe briefly why you think this is the case.
State your assumptions.
Fill in your answer here

 

Format                 

         Σ  

 

Words: 0

Maximum marks: 8

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

16/22

 Grayscale Blur: Further Optimization (10pts)
 
To iteratively blur the image, the kernel may be called multiple times from the host, synchronizing
and swapping image pointers between each iteration.
 
Instead of iteratively calling the kernel multiple times, we would like the kernel to be able to
perform all iterations before terminating.
 
We would like to change this:

int main() { 

    // ... setup ... 

    for ( int i = 0; i < NUM_ITERATIONS; i++ ) { 

        blur_gpu<<<grid_dim, thread_dim>>>(d_img, d_result); 

        // ... error handling ... 

        swap((void **) &d_img, (void **) &d_result); 

    } 

} 

 
Into this:

int main() { 

    // ... setup ... 

    blur_gpu<<<grid_dim, thread_dim>>>(d_img, d_result, NUM_ITERATIONS); 

} 

 
 
How can the kernel be rewritten to perform all iterations on the GPU? (The kernel should
process all iterations before terminating). Your answer should briefly summarize the
change(s) you would have to make.

 
What challenges are you likely to encounter when rewriting the kernel? Shortly summarize
the challenges and why they might cause problems if left unhandled. (Hint: There are
dependencies between iterations.)

 
What could be used to remedy the challenge(s)? (Hint: Problem Set 5 - Graded CUDA)

 
The above will be scored as part of the next problem, where you may add further comment.
 
The following questions do not need to be answered to get a full score, but are meant for
further thought. No extra points will be given!
Fill in your answer here

 
 
Does your solution impose constraints on your implementation? If so, shortly describe the
constraint(s).

 
If you answered that there are constraints in your implementation. Shortly describe, in
words, how the kernel can be rewritten such that it works for any image size.

 
What performance impact would your approach have? Shortly summarize both positive



TDT4200-EXAM-F2022

17/22

and negative impacts.

 
 
 
 

36 CUDA Blurr grading
Grading of CUDA Blurr and additional comments you may have re. the CUDA problems in this
section.
Fill any additional comments here

 

Format                 

         Σ  

 

Words: 0

Maximum marks: 9

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

18/22

37 Course reflections - multiple choice
 
In this problem we are curious about how you selected and reflected over the content and
problems sets in this course. No points will be deducted, but rather 3 points given if you answer
all of these.
 
We want to improve and really appreciate your honesty and will not count your answers
against you. In fact, we will only look at this problem AFTER the rest of your exam is
graded.
 
Which TWO of the followineg statements are the closest to your MAIN reasons for taking
this course? Select TWO only.

 
 
What were the BEST 3 aspects of this course? Pick max. 3.

 
Before reading any further, how relevant do you think this course was with respect to
sustainability

 

I found it online/in the course catalogue and found it interesting

A former student strongly recommended this course to me

This course seemed to have the most energetic and motivating instructor

It was the most interesting course taught in English

I like GPUs and wanted to learn more about CUDA

I wanted to take a course related to sustainability

I like courses with lots of programming

I have to take it as part of my major (e.g. Alg/HPC)

Interesting problem sets that were highly relevant for sustainability.

Learning CUDA programming

In class instruction, not just videos /remote teaching

Learning about parallel computing, performance and energy efficiency

Great TA support

Graded problem sets that count 50% of final grade

Access to real paralle clusters and GPU hardware

Interesting problem sets, that were painful but taught me a lot.

Enthusiastic instructor

Clear syllabus and great on-line resources

Not relevant

Somewhat relevant

A must-take course for people in STEM (science, technology, engineering or math)
interested in sustainability!

Very relevant

Relevant



TDT4200-EXAM-F2022

19/22

Pick the aspect of the course that seems most relevant for sustainability

 
What were the most interesting aspects and/or truthful statement regarding the Problem
sets. Select one or more alternatives

 
Select all the statements that you think mostly aligns with your opinion of TDT4200.

 
 
 

HPC systems use a lot of electric power, so parallel computing is not really sustainable

Problem set on shallow water equation that is highly relevant for sustainability

Optimizing for locality, reduces moving of data which is energy costly

Programming in parallel utilizes the computing systems better, so likely more energy
efficient

That they were graded so the exam only counts 50% which releaves a lot of stress

Liked learning MPI the most

Liked learning OpenMP/Pthreads the most

Working on the same problem, the shallow water equation, in several programming
enviroments

Like learning CUDA the most

The shallow water equations since they relate so closely to sustainability

The problems sets t

The shallow water equations since they relate so closely to other numerical simulations I
expect to work with

Prefer to study on my own, so did not attend to most classes

Would probably not recemmend this class. Content was not as expected

I may recommend this class --- Will have to see how this exams goes...

Clear material available -- never felt like I had to come to class

Did not attend many classes due to time clash with another course

Yes, love courses with enthusiastic instructors that make me feel like coming to class

Instructor talked too fast.

The problem sets took too much time compared to what I got out of them

Too much work / time-consuming problem sets!

Did not attend most classes due to work conflicts

Would have been nice if the lectures were at a different time so I could have attended class
more often

I wish this class had been taught in Norwegian

I learned a lot. Love the power of GPUs and would recomment this class

Maximum marks: 3



TDT4200-EXAM-F2022

20/22

38 Bonus question and comments
 
Comment on how useful was TDT4200 regarding making you aware that computing is related to
sustainability. 
Also add any further comments or quesitions regarding this exam below.
Please add your reflections here. You can get 2 bonus points for this.

 

Format                 

         Σ  

 

Words: 0

Maximum marks: 2

javascript:void('Paragraph Format')
javascript:void('Bold')
javascript:void('Italic')
javascript:void('Underline')
javascript:void('Subscript')
javascript:void('Superscript')
javascript:void('Remove Format')
javascript:void('Copy')
javascript:void('Paste')
javascript:void('Undo')
javascript:void('Redo')
javascript:void('Temporary Backup Snapshots')
javascript:void('Insert/Remove Numbered List')
javascript:void('Insert/Remove Bulleted List')
javascript:void('Decrease Indent')
javascript:void('Increase Indent')
javascript:void('Align Left')
javascript:void('Center')
javascript:void('Align Right')
javascript:void('Justify')
javascript:void('Insert Special Character')
javascript:void('Table')
javascript:void('Insert Drawing')
javascript:void('Edit formula')
javascript:void('Expand')


TDT4200-EXAM-F2022

21/22



TDT4200-EXAM-F2022

22/22



Document 1
Attached



FRONT PAGE – TDT4200 FINAL, FALL 2022 
 
Department of Computer Science 
 
Examination paper for TDT4200, Parallel Computing 
 
Examination date: Dec. 12, 2022 
 
Examination time (from-to): 15:00 – 19:00 
 
Permitted examination support material: None – only aids provided via Inspera 
 
Academic contact during examination: Prof. Anne C. Elster 
 Phone: 981 02 638 
 
Academic contact present at the exam location: YES, ca 16:00 (4pm) and 18:00 
   
OTHER INFORMATION 
  
Get an overview of the question set before you start answering the questions. 
 
Read the questions carefully and make your own assumptions. If a question is 
unclear/vague, make your own assumptions and specify them in your answer. Only contact 
academic contact in case of errors or insufficiencies in the question set. Address an 
invigilator if you wish to contact the academic contact. Write down the question in advance. 
  
Weighting:  
This exam will count 50% towards your final TDT4200 grade (scaled with the problem sets). 
 
The exam problems are weighted and the maximum score possible on this final is 100pts or 
% assuming we do not need to discount a problem due to late-discovered issues. 
 
ANSWERING TRUE/FALSE QUESTIONS WRONG MAY RESULT IN A NEGATIVE 
SCORE but will give a total score no lower than 0 on Section 1. 
  
Notifications: If there is a need to send a message to the candidates during the exam (e.g. 
if there is an error in the question set), this will be done by sending a notification in Inspera. 
A dialogue box will appear. You can re-read the notification by clicking the bell icon in the top 
right-hand corner of the screen. 
  
Withdrawing from the exam: If you become ill or wish to submit a blank test/withdraw from 
the exam for another reason, go to the menu in the top right-hand corner and click “Submit 
blank”. This cannot be undone, even if the test is still open.  
 
Access to your answers: After the exam, you can find your answers in the archive in 
Inspera. Be aware that it may take a working day until any hand-written material is available 
in the archive. 
  



Question 32
Attached



12/12/2022, 06:10 cilk_for

https://ww2.lacan.upc.edu/doc/intel/compiler_c/main_cls/cref_cls/common/cilk_for.htm 1/6

< Table Of Contents

cilk_for
A cilk_for loop is a replacement for the normal C/C++ for loop that permits loop iterations to run in
parallel.

The general cilk_for syntax is:
cilk_for (declaration; 
                  conditional expression; 
                  increment expression) 
body 

The following applies:

The declaration must declare and initialize a single variable, called the control variable. The
constructor's syntactic form does not matter. If the variable type has a default constructor, no explicit
initial value is needed.
The conditional expression must compare the control variable to a "termination expression" using one
of the following comparison operators: < <= != >= >
The termination expression and control variable can appear on either side of the comparison operator,
but the control variable cannot occur within the termination expression. The termination expression
value must not change from one iteration to the next.
The increment expression must add to or subtract from the control variable using one of the following
supported operations:

+=
-=
++ (prefix or postfix)
-- (prefix or postfix)

The value added to (or subtracted from) the control variable, like the loop termination expression, must
not change from one iteration to the next.

The runtime converts a cilk_for loop into an efficient divide-and-conquer recursive traversal over the loop
iterations.

Sample cilk_for loops include:
cilk_for (int i = begin; i < end; i += 2) 
     f(i); 

cilk_for (T::iterator i(vec.begin()); i != vec.end(); ++i) 
     g(i); 

In C, but not C++, the loop control variable can be declared in advance:
 int i; 
 cilk_for (i = begin; i < end; i += 2) 
      f(i); 

The serialization of a valid Intel® Cilk™ Plus program has the same behavior as the similar C/C++ program,
where the serialization of cilk_for is the result of replacing cilk_for with for. Therefore, a cilk_for
loop must be a valid C/C++ for loop, but cilk_for loops have several constraints compared to C/C++ for
loops.

Since the loop body is executed in parallel, it must not modify the control variable nor should it modify a
nonlocal variable, as that would cause a data race. A reducer can often be used to prevent a race.

Serial/parallel structure of cilk_for

Using cilk_for is not the same as spawning each loop iteration. In fact, the Intel compiler converts the
loop body to a function that is called recursively using a divide-and-conquer strategy; this provides

12/12/2022, 06:10 cilk_for

https://ww2.lacan.upc.edu/doc/intel/compiler_c/main_cls/cref_cls/common/cilk_for.htm 2/6

significantly better performance. The difference can be seen clearly in the Directed Acyclic Graph (DAG) for
the two strategies.

First, consider the DAG for a cilk_for, assuming N=8 iterations and a grain size of 1. The numbers label
the serial sequence of instructions, known as strands; these numbers indicate which loop iteration is
handled by each strand.

At each division of work, half of the remaining work is done in the child and half in the continuation.
Importantly, the overhead of both the loop itself and of spawning new work is divided evenly along with the
cost of the loop body.

If each iteration takes the same amount of time T to execute, then the span, which is the most expensive
path extending from the beginning to the end of the program, is log2(N) * T, or 3 * T for 8 iterations. The run-
time behavior is well balanced regardless of the number of iterations or number of workers.

Serial/parallel structure when spawning within a serial loop

Here is the DAG for a serial loop that spawns each iteration. In this case, the work is not well balanced,
because each child does the work of only one iteration before incurring the scheduling overhead inherent in
entering a sync. For a short loop, or a loop in which the work in the body is much greater than the control
and spawn overhead, there will be little measurable performance difference. However, for a loop of many
cheap iterations, the overhead cost will overwhelm any advantage provided by parallelism.

cilk_for body

The body of a cilk_for loop defines a special region that limits the scope of cilk_for and cilk_sync
statements within it. A cilk_sync statement within a cilk_for waits for completion only of the children
that were spawned within the same loop iteration. It will not sync with any other iteration, nor will it sync with
any other children of the surrounding function. In addition, there is an implicit cilk_sync at the end of every
loop iteration (after block-scoped variable destructors are invoked). As a result, if a function has outstanding



12/12/2022, 06:10 cilk_for

https://ww2.lacan.upc.edu/doc/intel/compiler_c/main_cls/cref_cls/common/cilk_for.htm 3/6

children when entering a cilk_for loop, it will have the same outstanding children when exiting the
cilk_for loop. Any children that were spawned within the cilk_for loop are guaranteed to have
synchronized before the loop terminates. Conversely, none of the children that existed before entering the
loop will be synchronized during loop execution. This quality of a cilk_for loop can be used to your
advantage (see Exception Handling).

If an exception is thrown from within a cilk_for loop body (and not handled within the same iteration),
then some of the loop iterations may not run. Unlike a serial execution, it is not completely predictable which
iterations will run and which will not. No iteration (other than the one throwing the exception) is aborted in the
middle.

Windows OS: There are restrictions when using Microsoft structured exception handling (specifically, the
/EHa compiler option and the__try, __except, __finally and__leave extensions to C/C++). See
Windows* Structured Exception Handling in Exception Handling.

cilk_for Type Requirements

With care, you may use custom C++ data types for the cilk_for control variable. For each custom data
type, you need to provide some methods to help the runtime system compute the loop range size so that it
can be divided. Types such as integer types and STL random-access iterators have an integral difference
type already, and so require no additional work.

Suppose the control variable is declared with type variable_type and the loop termination expression
has type termination_type, as shown here:
extern termination_type end; 
extern int incr; 
cilk_for (variable_type var; var != end; var += incr) ;

You must provide one or two functions to tell the compiler how many times the loop executes; these
functions allow the compiler to compute the integer difference between variable_type and
termination_type variables:
difference_type operator-(termination_type, variable_type);

difference_type operator-(variable_type, termination_type);

The following applies:

The argument types need not be exact, but must be convertible from termination_type or
variable_type.
The first form of operator- is required if the loop could count up; the second is required if the loop could
count down.
The arguments may be passed by const reference or value.
The program will call one or the other function at runtime depending on whether the increment is
positive or negative.
You can pick any integral type as the difference_type return value, but it must be the same for
both functions.
It does not matter if the difference_type is signed or unsigned.

Also, you need to tell the system how to add to the control variable by defining:
variable_type::operator+=(difference_type);

If you wrote -= or -- instead of += or ++ in the loop, define operator-= instead of operator+=.

These operator functions must be consistent with ordinary arithmetic. The compiler assumes that adding one
twice is the same as adding two once, and if

X - Y == 10

then

12/12/2022, 06:10 cilk_for

https://ww2.lacan.upc.edu/doc/intel/compiler_c/main_cls/cref_cls/common/cilk_for.htm 4/6

Y + 10 == X

cilk_for Restrictions

In order to parallelize a loop using the divide and conquer technique, the runtime system must pre-compute
the total number of iterations and must be able to pre-compute the value of the loop control variable at every
iteration. To enable this computation, the control variable must act as an integer with respect to addition,
subtraction, and comparison, even if it is a user-defined type. Integers, pointers, and random access
iterators from the standard template library all have integer behavior and thus satisfy this requirement.

In addition, a cilk_for loop has the following limitations, which are not present for a standard C/C++ for
loop. The compiler will report an error or warning for violations of the following.

There must be exactly one loop control variable, and the loop initialization clause must assign the
value. The following form is not supported:
cilk_for (unsigned int i, j = 42; j < 1; i++, j++)

The loop control variable must not be modified in the loop body. The following form is not supported:
cilk_for (unsigned int i = 1; i < 16; ++i) i = f();

The termination and increment values are evaluated once before starting the loop and will not be re-
evaluated at each iteration. Therefore, modifying either value within the loop body will not add or
remove iterations. The following form is not supported:
cilk_for (unsigned int i = 1; i < x; ++i) x = f();

In C++, the control variable must be declared in the loop header, not outside the loop. The following
form is supported for C, but not C++:
int i; cilk_for (i = 0; i < 100; i++)

A break or return statement will not work within the body of a cilk_for loop; the compiler will
generate an error message. break and return in this context are reserved for future speculative
parallelism support.
A goto can only be used within the body of a cilk_for loop if the target is within the loop body. The
compiler will generate an error message if there is a goto transfer into or out of a cilk_for loop
body. Similarly, a goto cannot jump into the body of a cilk_for loop from outside the loop.
A cilk_for loop may not "wrap around." For example, in C/C++ you can write: for (unsigned
int i = 0; i != 1; i += 3);

and this has well-defined, if surprising, behavior. It means execute the loop 2,863,311,531 times. Such
a loop produces unpredictable results when converted to a cilk_for loop.
A cilk_for loop may not be an infinite loop such as:
cilk_for (unsigned int i = 0; i != i; i += 0);

cilk_for Grain Size

The cilk_for statement divides the loop into chunks containing one or more loop iterations. Each chunk
is executed serially, and is spawned as a chunk during the execution of the loop. The maximum number of
iterations in each chunk is the grain size.

In a loop with many iterations, a relatively large grain size can significantly reduce overhead. Alternately, with
a loop that has few iterations, a small grain size can increase the parallelism of the program and thus
improve performance as the number of processors increases.

Setting the Grain Size

Use the cilk grainsize pragma to specify the grain size for one cilk_for loop:
#pragma cilk grainsize = expression

For example, you can write:



12/12/2022, 06:10 cilk_for

https://ww2.lacan.upc.edu/doc/intel/compiler_c/main_cls/cref_cls/common/cilk_for.htm 5/6

#pragma cilk grainsize = 1

cilk_for (int i=0; i<IMAX; ++i) { . . . }

If you do not specify a grain size, the system calculates a default that works well for most loops. The default
value is set as if the following pragma were in effect:

#pragma cilk grainsize = min(512, N / (8*p))

where N is the number of loop iterations, and p is the number of workers created during the current program
run. This formula will generate parallelism of at least 8 and at most 512. For loops with few iterations (less
than 8 * workers) the grain size will be set to 1, and each loop iteration may run in parallel. For loops with
more than (4096 * p) iterations, the grain size will be set to 512.

If you specify a grain size of zero, the default formula will be used. The result is undefined if you specify a
grain size less than zero.

The expression in the pragma is evaluated at run time. For example, here is an example that sets the grain
size based on the number of workers:

#pragma cilk grainsize = n/(4*__cilkrts_get_nworkers())

Loop Partitioning at Run Time

The number of chunks that are executed is approximately the number of iterations N divided by the grain
size K.

The Intel compiler generates a divide and conquer recursion to execute the loop. In pseudo-code, the control
structure looks like this:
void run_loop(first, last) 
{ 
if (last - first) < grainsize) 
{ 
   for (int i=first; i<last ++i) LOOP_BODY; 
} 
else 
{ 
   int mid = (last-first)/2; 
   cilk_spawn run_loop(first, mid); 
   run_loop(mid, last); 
  } 
} 

In other words, the loop is split in half repeatedly until the chunk remaining is less than or equal to the grain
size. The actual number of iterations run as a chunk will often be less than the grain size.

For example, consider a cilk_for loop of 16 iterations:

cilk_for (int i=0; i<16; ++i) { ... }

With grain size of 4, this will execute exactly 4 chunks of 4 iterations each. However, if the grain size is set to
5, the division will result in 4 unequal chunks consisting of 5, 3, 5 and 3 iterations.

If you work through the algorithm in detail, you will see that for the same loop of 16 iterations, a grain size of
2 and 3 will both result in exactly the same partitioning of 8 chunks of 2 iterations each.

Selecting a Good Grain Size Value

The default grain size usually performs well. Use the following guidelines to select a different value:

If the amount of work per iteration varies widely and if the longer iterations are likely to be unevenly
distributed, it might make sense to reduce the grain size. This will decrease the likelihood that there is
a time-consuming chunk that continues after other chunks have completed, which would result in idle
workers with no work to steal.

12/12/2022, 06:10 cilk_for

https://ww2.lacan.upc.edu/doc/intel/compiler_c/main_cls/cref_cls/common/cilk_for.htm 6/6

If the amount of work per iteration is uniformly small, then it might make sense to increase the grain
size. However, the default usually works well in these cases, and you don't want to risk reducing
parallelism.
If you change the grain size, carry out performance testing to ensure that you've made the loop faster,
not slower.

Parent topic: Intel(R) Cilk(TM) Plus Keywords

Submit feedback on this help topic

Copyright © 1996-2010, Intel Corporation. All rights reserved.



Question 33
Attached



1 Starting Code

///< Contains all the information about a grayscale image.

typedef struct {

int width;

int height;

unsigned char *data;

} GrayscaleImage;

/**

* Performs a convolution over the image, averaging the surrounding pixels.

* @param image The image to blur.

* @param result The resulting output image.

*/

void blur(GrayscaleImage *image, GrayscaleImage *result)

{

int width = image->width;

int height = image->height;

unsigned char *data = image->data;

unsigned char *result_data = result->data;

// Iterate over image height, excluding pixels at the boundary.

for ( int y = 1; y < height - 1; y++ )

{

// Iterate over the image width, excluding pixels at the boundary.

for ( int x = 1; x < width - 1 ; x++ )

{

unsigned int sum = 0;

// The index of the pixel at coordinates (i,j)

size_t pixel_index = y * width + x;

// k denotes the y offset from the current pixel's y-coordinate.

// iterating from -1 to 1 will include the current row and the rows above and below.

for ( int k = -1; k <= 1; k++ )

{

sum += data[pixel_index + k * width - 1];

sum += data[pixel_index + k * width];

sum += data[pixel_index + k * width + 1];

}

float divisor = 1.0f / 9.0f;

// Write the resulting pixel's value to the output image.

result_data[pixel_index] = (unsigned char) (divisor * sum);

}

}

}

1


	Starting Code

