
‭TDT4200 Parallel Computing - Fall 2024 Final Exam Solutions‬

‭1.1 Performance - T/F‬
‭Processor speed is always more important than data locality with respect to performance‬
‭Select one alternative (1pt, -0.3 for wrong answer, 0 for no answer)‬

‭False – Remember: 1) Location 2) Location and 3) Location (See lecture notes)‬

‭1.2 Global Sum T/F‬
‭Parallelizing a global sum can be done in a tree structure on hypercubes.‬
‭Select one alternative (1pt, -0.3 for wrong answer, 0 for no answer) :‬

‭True – this was shown on the blackboard in class.‬

‭1.3 Threads prog. can start - T/F‬
‭The number of threads a program can start is limited to the number of‬
‭cores in the processor‬
‭Select one alternative (1pt, -0.3 for wrong answer, 0 for no answer):‬

‭False - counterexample: Hyperthreading‬

‭1.4 Heap T/F‬
‭The heap is used to keep track of active function parameters‬
‭Select one alternative :‬‭False‬

‭1.5 Pthread Mutex Blocking T/F‬
‭A call to pthread_mutex_lock will block the calling thread until its pthread mutex t‬
‭argument becomes available.‬
‭Select one alternative :‬‭True‬

‭1. 6 OpenMP loops - T/F‬
‭In an‬‭OpenMP parallel for‬‭loop, a‬‭dynamic‬‭schedule‬‭will always assign‬
‭the same iterations to the same threads if the program is run repeatedly.‬
‭Select one alternative (1pt, -0.3 for wrong answer, 0 for no answer):‬ ‭False‬

‭1.7 MPI Rank - communicator - T/F‬
‭An MPI process will retain its original rank as a key in calculating its new rank when doing an‬
‭MPI_Comm_Split‬
‭Select one alternative (1pt, -0.3 for wrong answer, 0 for no answer):‬‭True‬

‭1.8 CUDA thread block T/F‬
‭A CUDA‬‭thread block‬‭may be distributed across several‬‭SMs.‬
‭Select one of the following alternatives (1pt, -0.3 for wrong answer, 0 for no answer):‬

‭1.9 Scalability - Two T/F questions‬
‭Total weight, 2/80 (-0.3pts for each wrong answers, 0pts for no answers)‬

‭a) The Matrix-vector multiplications are strongly scalable.‬
‭Select one alternative:‬

‭False – Matrix multiplication is known to have weak scalability, i.e. good scalability if‬
‭increasing problem size (see below). For strong scaling there should be no gathers, reductions‬
‭or broadcasts.‬

‭b) Gustavson´s Law describes how weak scalabilty is maintained by increasing problem size:‬
‭Select one alternative:True‬

‭2.1 Latency & Bandwidth‬
‭What is the difference between‬‭Latency‬‭and‬‭Bandwidth?‬
‭Select one alternative (max 1pt):‬

‭a) Latency reflects how long the total communication is, whereas bandwidth the‬
‭communication rate - No‬

‭✅ ‬‭b) Latency reflects the time elapsing between a source‬‭starting to send data until the‬
‭data starts arriving at the destination, whereas bandwidth is the rate at which a link can‬
‭transmit data - Yes‬

‭c) Latency is how long it takes before the message is ready to be sent, whereas‬
‭bandwidth is how long it takes to send the message - No‬
‭d) a) and b) above - No‬

‭2.2 GPU features‬
‭Which of the following apply to GPUs -- check all that apply‬
‭Select one or more alternatives (max. 2 pts, -0.3 for each wrong answer, 0 for no answer):‬

‭✅Optimization of different level of caches is key‬
‭Clock speed is typically higher than CPUs‬
‭Fast access to global memory‬
‭✅Memory access optimization though coalescing is key‬

‭2.3 SIMT vs SIMD - Multiple choice‬
‭Which of the following are true for SIMT -- check all that apply‬
‭Select one or more alternatives (max 2 pts, -0.3 for each wrong answer):‬

‭Single instruction, multiple operators X‬
‭Single instruction, multiple addresses✅ ‬
‭Single instruction, multiple outputs X‬
‭Single instruction, multiple flow paths ✅ ‬
‭Single instruction, multiple register sets✅ ‬

‭2.4 CUDA steps - fast or slow‬
‭CUDA program typically have the 5 following steps:‬
‭1) Setup inputs on the host (CPU-accessible memory)‬
‭- Allocate memory for outputs on the host CPU‬
‭- Create the kernel that performs the calculations‬
‭2) Set up device (GPU) memory incl. Copy inputs from host to GPU‬
‭3) Execute kernel on device (GPU)‬
‭4) Transfer result from device (GPU) to host‬
‭5) Free the device memory‬

‭Which are typically the‬‭slow‬‭steps:‬
‭Select one alternative (1pt for correct answer, no points if wrong or no answer):‬

‭✅ ‬‭Steps 2 and 4‬ ‭(Not‬‭1‬‭& 2,‬‭3‬‭& 4 nor‬‭3 & 5), 1 typically‬‭a small part of overall.‬
‭Doing a lot of 2 & 4 kills performance.‬

‭2.5 Elster´s Algorithm‬
‭One or more of the following is true for Elster´s Algorithm‬
‭Select one or more alternatives that are TRUE regarding Elster´s algorithm:‬

‭✅ Linear with a low scaling factor ✅May have tail recursion‬
‭✅ Loop controls can be done with shift operations X Uses doubly nested loops‬
‭X O(N) with a high scaling factor due to complexity X O(N log N)‬

‭2.6 ARM GPUs‬
‭Based on what you learned at the ARM guest lecture or slides from 2023:‬
‭Select one or more alternatives (max. 2pts for correct answers, 0 for no or wrong answers):‬

‭✅ ARM Norway was originally established by NTNU students as Falanx Microsystems‬
‭X ARM GPUs use branch prediction‬
‭X ARM GPUs use speculative execution‬

‭✅ ARM GPUs add performance by adding more core‬
‭✅ Having the right memory layout makes a huge difference on ARM GPUs‬

‭3. MPI programming -- two longer questions‬

‭MPI programming -- total score max 16/80‬
‭Consider the following MPI program, which allocates and initializes N x N‬
‭matrices on each rank, and sets a particular value in the diagonal elements only‬
‭on rank 0:‬

‭#include <stdio.h>‬
‭#include <stdlib.h>‬
‭#include <string.h>‬
‭#include <mpi.h>‬

‭int rank, size;‬

‭int N = 8;‬
‭double *a = NULL;‬
‭#define A(i,j) a[(i)*N+(j)]‬

‭int‬
‭main (int argc, char **argv)‬
‭{‬

‭if (argc > 1)‬
‭N = strtol (argv[1], NULL, 10);‬

‭MPI_Init (&argc, &argv);‬
‭MPI_Comm_rank (MPI_COMM_WORLD, &rank);‬
‭MPI_Comm_size (MPI_COMM_WORLD, &size);‬

‭a = malloc (N*N*sizeof(double));‬

‭for (int i=0; i<N; i++)‬
‭for (int j=0; j<N; j++)‬

‭A(i,j) = (double) rank;‬

‭if (rank == 0)‬
‭for (int i=0; i<N; i++)‬

‭A(i,i) = 42.0;‬

‭/* QUESTION 3.1 CODE HERE */‬
‭/* QUESTION 3.2 CODE HERE */‬

‭free (a);‬
‭exit (EXIT_SUCCESS);‬

‭}‬

‭3.1‬
‭Extend the program (‬‭above/on the last page)‬‭so that‬‭rank 0 transmits its‬
‭diagonal values into the diagonals of the matrices at every other rank‬
‭without overwriting the rest of their matrices.‬ ‭Fill in your answer here‬

‭MPI_Datatype diagonal;‬
‭MPI_Type_vector (N, 1, (N+1), MPI_DOUBLE, &diagonal);‬
‭MPI_Type_commit (&diagonal);‬
‭MPI_Bcast (a, 1, diagonal, 0, MPI_COMM_WORLD);‬
‭MPI_Type_free (&diagonal);‬

‭3.2 Extend the program to shift the matrices in a circle so that each rank < size−1‬
‭replaces its matrix with the one from rank + 1, and rank size − 1 replaces its‬
‭matrix with the one from rank 0.‬

‭Fill in your answer here‬

‭double *a_temp = malloc (N*N*sizeof(double));‬
‭int left = (rank+size-1)%size;‬
‭int right = (rank+1)%size;‬
‭MPI_Sendrecv (a, N*N, MPI_DOUBLE, left, 0, a_temp, N*N, MPI_DOUBLE, right, 0,‬

‭MPI_COMM_WORLD, MPI_STATUS_IGNORE);‬
‭memcpy (a, a_temp, N*N*sizeof(double));‬
‭free (a_temp);‬

‭See next page for‬‭Problem 4 - Pthreads, OpenMP and‬‭Barriers‬

‭4.1 Pthreads - barrier‬
‭In pseudo-code∗, write a barrier operation for a threaded program using only‬
‭locking/mutual exclusion operations (equivalent to pthread mutex t or omp lock t).‬
‭(∗‬‭It is not necessary to write detailed and correct‬‭pthreads code, only to show‬
‭how your algorithm works‬‭)‬ ‭Max 10/80 pts given‬‭.‬
‭Fill in your answer here:‬

‭// Minimal busy-waiting variant; versions where threads 0 through n_threads-2‬
‭// go to sleep and thread n_threads-1 signals them to wake up are better‬

‭// Global variables, initial values‬
‭n_threads = 12‬
‭counter = 0‬
‭lock = open‬

‭// Thread-local function‬
‭set_lock (lock)‬
‭counter = counter + 1‬
‭release_lock (lock)‬
‭while (counter < n_threads)‬

‭wait (short_interval)‬

‭4.2 OpenMP Scheduling‬
‭What is the difference between the dynamic and guided OpenMP schedules?‬
‭Fill in your answer here (max. 3pts)‬

‭The dynamic schedule executes threads as soon as possible and uses CPU resources as soon‬
‭as they're available.‬
‭The guided schedule allows for putting restrictions on how to organize the threads‬

‭4.3 #pragma omp single‬
‭Briefly describe the effect of the‬‭#pragma omp single‬‭directive, as well as a‬
‭practical use-case for it.‬
‭Fill in your answer here (max. 3 pts)‬

‭This directive indicates that the annotated block should only be executed on a single thread.‬
‭This is useful for spawning tasks using #pragma omp, as one usually wants to spawn tasks only‬
‭once from one thread. Without the single directive, the tasks would be spawned from every‬
‭thread that is executing the block.‬

‭5 General Parallel Computing Questions‬

‭5.1 Amdahl - graph‬
‭Consider the following graph of parallel utilization over time, recorded from a‬
‭threaded program on a 6-core processor. Assume that the parallel work speeds‬
‭up linearly with increasing core counts, and that we compare runs with identical input data.‬

‭What is the maximal speedup of the program if we increase the number of cores? (Max 2‬
‭pts)‬‭Fill in your answer here‬

‭From the graph we see 39 seconds of work total, 36 are parallelizable.‬

‭f = 3/39 = 1/13, so lim_(p-> ∞) S(p) = 13‬

‭Many answered looking at the speedup compared to the measured time with 6 cores, which‬
‭would be equal to 1/(3/9) = 9/3 = 3x, but this is NOT the max. speedup of the program.‬

‭5.2 on next page‬

‭5.2: 5 vs 9pt stencils‬
‭Let’s say we wanted to use a 9-point stencil for approximation on the current time step‬
‭instead of just 5, as illustrated in Figure 11 from PS 3.‬

‭How would you communicate the value needed from Rank‬‭2? (Max. 2 pts)‬
‭Hint: There are multiple solutions to this question.‬

‭Fill in your answer here‬

‭THIS PROBLEM WAS VERBATIM FROM PROBLEM SET GIVEN EARLIER THIS SEMESTER‬
‭SEE ALSO PS SOLUTIONS!‬

‭One solution: We could synchronize the communication in such a way that all east-west‬
‭exchanges happen first. Then rank 3 would already have the desired value from rank 2. After‬
‭that, all processes need to be synchronized. Then, all north-south exchanges would happen,‬
‭leading to the original value from rank 2 being transferred to rank 1 via the communication‬
‭between rank 3 and 1.‬

‭5.3 Pthread borders‬
‭Why is there no need for a border exchange when using Pthreads?‬
‭Fill in your answer here (max. 2pts)‬

‭Pthreads assumes shared memory, so the domain data is shared among the processes. The‬
‭processes do not maintain their own separate copy of the data, as is the case with distributed‬
‭memory environments such as MPI. Whenever one thread updates a shared variable, it is‬
‭immediately available to the other threads, barring issues with caching and memory conflicts‬

‭5.4 GPU loops /fast?‬
‭Given an input signal x[n], suppose we have two output signals y_1[n] and y_2[n], given by the‬
‭difference equations:‬

‭(a) y_1[n] = x[n - 1] + x[n] + x[n + 1]‬

‭(b) y_2[n] = y_2[n - 2] + y_2[n - 1] + x[n]‬

‭Which calculation do you expect will have an easier and faster implementation on the‬
‭GPU, and why?‬
‭Fill in your answer here (max 2 pts given)‬

‭Equation (a) will be faster, as it clearly distinguishes between read-only and write-only variables.‬
‭It only reads consecutive values from x, meaning all threads can access it without being‬
‭interrupted by other threads writing to the array. This is not the case for (b). Here, one thread‬
‭may read a value from y_2 before updating another value. Consequently, every thread will have‬
‭issues with caching the values, as they're consistently written by other threads.‬

‭5.5 CUDA True/False (4pts total)‬
‭Each correct True/False answer is worth 1 pt, -0.3 for wrong answer, 0 for no answer.‬

‭5.5 (a) The __global__ function qualifier indicates that‬‭the function‬‭can be executed‬‭on the‬
‭host‬‭and on the device‬‭(GPU). The function can be‬‭called from the host or from the device.‬
‭FALSE‬ ‭_global__ functions are functions called on‬‭host (typically from main()) to be executed‬
‭on the GPU (the device), using the <<< …>>> syntax. In newer versions of CUDA, they may be‬
‭called from the device‬‭within other‬‭global‬‭functions,‬‭but the function called is not executed on‬
‭host.‬

‭5.5 (b) The __syncthreads() function synchronizes all threads in the‬‭grid‬‭.‬
‭FALSE‬‭The __syncthreads() command is a‬‭block-level‬‭synchronization barrier. A CUDA grid‬
‭contains several blocks.‬

‭5.5 (c) A variable marked with a __shared__ type qualifier is shared among all threads in a‬
‭thread block, while a variable with a __constant__ type qualifier is shared among all threads in‬
‭the grid.‬ ‭TRUE‬

‭5.5 (d) Shared memory has higher throughput and lower latency compared to global memory.‬
‭Select an alternative:‬‭TRUE‬

‭Section & - CUDA Questions‬
‭Oppg 25/ 6.1 CUDA - short answer‬
‭You can get max, 6/80 pts total on the following.‬
‭6.1 a) You decide to parallelize a C program that takes 20 seconds to run on a CPU.‬

‭You implement a CUDA kernel to replace a C function that consumes 80% of the CPU runtime‬
‭and find that the total runtime drops to 12 seconds.‬

‭i) How much time was spent in the new code? Show your calculation‬
‭Fill in your answer here‬

‭The new GPU-specific code takes 8 seconds : 8 = 12 - 20(1 - 0.8) seconds.‬
‭or‬
‭The old C function took 80% of the total runtime of 20 seconds = 16 seconds.‬
‭This leaves 4 seconds for the remaining non-parallel C code.‬
‭The new total runtime is 12 seconds = 4 + new code = 8 seconds runtime of new code.‬

‭ii) You measure the execution time for the GPU kernel and find that it finishes in 2 seconds.‬
‭What other activity can account for the remaining time spent in the new code?‬
‭USE NO MORE THAN 10 WORDS FOR YOUR ANSWER‬

‭Fill in your answer here‬

‭Allocating device memory and data transfer between host and device.‬

‭6.1 b) Name at least 2 advantages of parallelizing with CUDA as opposed to MPI?‬
‭Fill in your answer here‬

‭- CUDA uses lightweight threads, whereas MPI is process-based.‬
‭- CUDA uses shared memory /shared address space during calculations,‬ ‭except from‬
‭to/from host‬

‭See also PS 6 solutions‬

‭6.2 CUDA Programming (10/80)‬

‭6.2 Part 1.‬‭Your internship co-worker notices that the kernel shown below doesn’t always work‬
‭and asks you to help debug it. Each block has a shared flag (cleared in each iteration), and any‬
‭thread that triggers some condition sets the flag. The kernel should terminate when no thread‬
‭triggers the condition, but sometimes, some of the threads terminate early.‬

‭__global__ void iterate(void* data)‬
‭{‬

‭__shared__ int blockContinueFlag;‬
‭do {‬

‭if (threadIdx.x == 0) {‬
‭blockContinueFlag = 0;‬

‭}‬
‭__syncthreads();‬
‭//do some work...‬
‭if (some condition) {‬

‭// If >= 1 thread(s) execute this, flag will be written to 1‬
‭blockContinueFlag = 1;‬

‭}‬
‭__syncthreads();‬

‭} while (blockContinueFlag);‬
‭}‬

‭6.2 Part 1, (a) Explain what is going wrong (in given code)? USE NO MORE THAN 30‬
‭WORDS!‬
‭Fill in your answer here‬

‭Thread 0 is able to reset the flag to 0 before other threads (other warps) evaluate the flag‬
‭for the loop test.‬‭This is a serious synchronization‬‭issue, even if the intent is to synchronize per‬
‭block only. 0.5 pts if mention only synch of blocks.‬

‭(b) Explain how to fix this bug using NO MORE THAN‬‭15 WORDS:‬

‭Fill in your answer here:‬

‭Add _synchthreads at the beginning of the loop.‬
‭0-5- 1pt if give a general solution, not a per block one, as intended. For synchronization across‬
‭blocks only, you could set up a flag in global memory.‬

‭6.2‬‭Part 2: Coalesced Memory Access (6 points)‬

‭Let the block shape be (32, 32, 1). Let data be a (float *) pointing to global memory and let data‬
‭be 128 byte aligned (so data % 128 == 0).‬

‭Consider each of the following access patterns.‬

‭a) data[threadIdx.x + blockSize.x * threadIdx.y] = 1.0;‬
‭Is this write coalesced? How many 128 byte cache lines does this write to?‬

‭Fill in your answer here‬

‭Yes, this write is coalesced. I‬‭n a given warp, threadIDx.x will vary from 0 to 31, so the write‬
‭will access 32 consecutive floats offset starting from 0. A float is 4 bytes , 32 floats * 4 = 128‬
‭bytes, so each warp writes to one 128-byte cache line.‬

‭(b) data[threadIdx.y + blockSize.y * threadIdx.x]‬‭= 1.0;‬
‭Is this write coalesced? How many 128 byte cache lines does this write to?‬

‭Fill in your answer here‬

‭This write is not coalesced because each warp is not accessing the minimum possible‬
‭128-bye cache lines.‬‭The code does not access the‬‭array consecutively. In a warp, threadIdx.y‬
‭will be the same and threadIx.x will vary from 0 to 31. So we can think of a warp as accessing‬
‭32 consecutive rows 1 column per instruction of the data array is 2D where each access is 32‬
‭floats = 128 bytes away from the previous access.‬
‭So each warp will access 32 different 128-byte cache lines since in a warp each thread is‬
‭accessing a float 128 byte away form each of the next closest access.‬

‭t thus will writes to 32*32=1024 cache lines.‬
‭The thread 0,0 accesses location 0, thread 1,0 accesses location 32 and so on. This leads to‬
‭every warp requiring 32 different cache lines. As there are 32 warps in the block configuration,‬
‭this adds up to 1024 cache lines.‬

‭6.2 Part 3. (PS6 question)‬
‭What are some pros and limitations when using cooperative groups?‬
‭List at least 2 pros and 2 limitations for full score.‬
‭Fill in your answer here‬

‭Pros:‬
‭- More versatile synchronization options that reflect the hardware architecture.‬
‭- Additional communication options, useful for e.g. global sum.‬

‭Cons:‬
‭- The entire grid must fit into the GPU's capacity. Grid can't be larger than available SMs and‬
‭their warp capacity.‬
‭- May lead to more synchronization and thus more idle time.‬
‭- Requires more shared memory, increasing memory pressure.‬

‭Bonus question on sustainability (+1 pt max)‬
‭Comment on how useful TDT4200 was in making you aware that computing is related to‬
‭sustainability.‬

‭+0.5 pts for parallel computing related to improving performance/reduce energy consumption;‬
‭+0.5 for mentioning how solving PDEs can model/simulate physical systems to optimize natural‬
‭resources.‬

