NTNU - Trondheim Norwegian University of Science and Technology

Examination paper for TDT4230 Graphics \& Visualization

Academic contact during examination: Theoharis Theoharis
Phone: 73591447

Examination date: 16.5.2014
Examination time (from-to): 09:00-13:00
Permitted examination support material:
No written or printed materials allowed.
Simple (non-scientific) calculators are allowed.

Other information:

Time allowed: 4 hours.
The point scores for each question part are shown in the text. Total points: 50
READ EACH QUESTION THROUGH CAREFULLY BEFORE BEGINNING YOUR ANSWER. ANSWER ALL QUESTIONS. SHOW ALL YOUR WORKING.

Language: English

Number of pages: 4 (including this page)

1. Theme: Parametric Curves [10pts]

Given the DeCasteljau triangle:

a. What degree Bezier curve is this triangle made for? [2pts]
b. What is the Bezier curve point for $t=0.5$ given $\mathbf{p}_{0}=[0,0]^{\top}, \mathbf{p}_{1}=[4,8]^{\top}, \mathbf{p}_{2}=[8,16]^{\top}$, $p_{3}=[16,32]^{\top} ? ~[4 p t s]$
c. If the [0..1] range is sampled at 100 points to produce the curve, how many multiplications in total are used, assuming that the curve is in 3D space? [4pts]

2. Theme: Visualization Principles [10pts]

In the context of visualization:
a. Describe a filtering technique used to remove input data noise. [2pts]
b. What is a transfer function? [3pts]

In the following transfer function:

$$
\begin{aligned}
i_{\text {out }} & =f_{\text {quant }}\left(f_{\text {contrast }}\left(i_{\text {in }}\right)\right), \\
f_{\text {contrast }}(x) & =\frac{x-x_{\min }}{x_{\max }-x_{\min }} \cdot v_{\max }, \\
f_{\text {quant }}(x) & =x_{\min }+\frac{\left(x_{\max }-x_{\min }\right)}{N} \cdot\left\lfloor N \cdot \frac{x-x_{\min }}{x_{\max }-x_{\min }}+\frac{1}{2}\right\rfloor
\end{aligned}
$$

c. what is $x_{\min }$ and $x_{\max }$ and what do $f_{\text {contrast }}$ and $f_{\text {quant }}$ do? [5pts]

3. Theme: Illumination [10pts]

In the Phong illumination model:
a. what is the reflection vector $\overrightarrow{\mathbf{r}}$, where is it used and what can it be replaced by?. [3pts]
b. what is the difference between Gouraud shading and Phong shading? [3pts]

In the ambient occlusion equation:

$$
\begin{aligned}
& I_{a}(\mathbf{p})=k_{a} I_{a} w(\mathbf{p}), \\
& w(\mathbf{p})=\frac{1}{\pi} \int_{\Omega} \mu\left(d\left(\mathbf{p}, \theta_{i}, \phi_{i}\right)\right) \cos \theta_{i} d \vec{\omega}
\end{aligned}
$$

c. describe the output of the d function? [2pts]
d. what does $w(p)$ represent? [2pts]

4. Theme: Visualization Algorithms [10pts]

Given the following implementation of the Marching Cubes algorithm:

```
Void MC()
{
    for (i= 0; i<maxcubel; i++)
        for (j= 0; j<maxcubeJ; j++)
        for (k= 0; k<maxcubeK; k++)
        {
        I1=get_label (i,j,k);
        I2=get_label (i+1,j,k);
        18=get_label (i+1,j+1,k+1);
        index=11++12++\3++14++15++16++17++18;
                bindex=map_2_basic_index(index);
                transform=map_2_basic_trans(index);
                surface_list= precomputed_surfaces(bindex,transform^{-1});
                for ( }\textrm{p}=0;p<num_vertices(surface_list); p++
                            compute_precise_edge_position(p,cube_field_values(i,j,k));
                for ( }\textrm{p}=0;\textrm{p}<\mathrm{ num_vertices(surface_list) p++)
                        compute_normal(p, cube_field_values(i,j,k));
        }
}
```

a. What does the command compute_precise_edge_position(p,cube_field_values(i,j,k)); do? [2pts]
b. Why are there 8 labels 11 ... 18 ? [2pts]
c. What is transform? [2pts]
d. What is bindex? [2pts]
e. What is the output of the algorithm? [2pts]

5. Theme: Ray Tracing [10pts]

Given the following function of a ray tracer:
Color raytrace(Ray r, int depth, Scene world, vector <Light*> lights)
\{
Ray *refl, *tran;
Color color_r, color_t, color_!;
if (depth > MAX_DEPTH)
return backgroundColor;
int hits = findClosestIntersection(r, world);
if (hits $==0$)
return backgroundColor;
color_I = calculateLocalColor(r, lights, world);
if (r->isect->surface->material->k_refl > 0)
\{
refl = calculateReflection(r);
color_r = raytrace(refl, depth+1, world, lights);
delete refl;
\}
if (r->isect->surface->material->k_refr > 0)
\{
tran = calculateRefraction(r);
color_t = raytrace(tran, depth+1, world, lights);
delete tran;
\}
return color_I + color_r + color_t;
\}
f. Which statement of this code is the most expensive to execute and what is its time complexity in terms of the number of rays R and objects N ? [2pts]
g. What does the statement raytrace(tran, depth+1, world, lights); do? [2pts]
h. Which additional recursion termination condition can you think of? [2pts]
i. Which subroutine of raytrace includes the consideration of shadow rays and what do these rays do? [2pts]
j. How can the ray-object intersection tests be sped up using space subdivision? [2pts]

