1. Theme: Bezier Curves (25 points)

- a) Given the three control points \mathbf{p}_0 , \mathbf{p}_1 and \mathbf{p}_2 . Show how to derive the quadric Bezier curve $\mathbf{P}^2(t)$ using the three control points. Show the intermediate steps. **(6 points)**
- b) Describe the de Casteljau algorithm in your own words and provide a figure that illustrates your description. **(7 points)**
- c) Write pseudo code for the de Casteljau algorithm. (7 points)
- d) What is the convex hull property? Is this a property of Bezier curves? (3 points)
- e) Can every nth-degree polynomial curve be written in the form of a Bezier curve? (2 point)

2. Theme: Illumination (25 points)

- a) Describe the Phong illumination model. Describe all components and how they are computed. **(10 points)**
- b) Given a polygon (triangle) comprised of the three vertices v_{i-1}, v_i and v_{i+1}, provide a formula for computing the normal vector n of the triangle. (5 points)
- c) Describe how to derive the intensity $I(x_s, y_s)$ for a pixel centered at x_s, y_s given the three vertices v_1 , v_2 and v_3 using Gouraud shading where $v_1 = (x_1, y_1)$, $v_2 = (x_2, y_2)$ and $v_3 = (x_3, y_3)$. (7 points)
- d) Use the formulas derived in c) to compute I(2.5, 2.5), given $v_1 = (1.0,2.0)$, $v_2 = (4.0,1.0)$, and $v_3 = (3,4)$ where I(v_1)=2.0, I(v_2)=3.0 and I(v_3)= 4.0 (3 points)

3. Theme: Texturing (25 points)

- a) Describe environment mapping. (7 points)
- b) What is a view-dependent texture map? Discuss its pros and cons. **(6 points)**
- c) What is mip-mapping and what problem does it solve? (6 points)
- d) What are procedural textures? Give examples (with formulas) for two common 3D procedural textures of your choosing. **(6 points)**

4. Theme: Ray Tracing (25 points)

- a) Explain the principles of ray traycing. (8 points)
- b) The 2D scene illustrated in figure 1 has two light sources, a partially transparent and reflective object and a mirror object. Draw all rays needed to compute the color of the eye ray. Note the angle of the eye ray. (4 points)
- c) Write pseudo code for the data structures required for ray tracing. (5 points)
- d) Write pseudo code for the recursive ray-tracing algorithm. (8 points)

Figure 1: Draw all rays needed to compute the color of the eye ray.