

Students will find the examination results in Studentweb. Please contact the department if you

have questions about your results. The Examinations Office will not be able to answer this.

Department of (Computer and Information Science)

Examination paper for (TDT4237) (Software Security)

Academic contact during examination: Jingyue Li

Phone: 9189 7446

Examination date: 24-May-2018

Examination time (from-to): 15.00-17.00

Permitted examination support material: D

Other information:

Language: English

Number of pages (front page excluded): 7

Number of pages enclosed: 1

Checked by: Per Håkon Meland

Date Signature

Informasjon om trykking av eksamensoppgave

Originalen er:

1-sidig x 2-sidig □

sort/hvit □ farger □

skal ha flervalgskjema □

Page 2 of 17

Page 3 of 17

Introduction

In this course, the written exam will count 70% of the final grade and the

remaining 30% of the final grade comes from the compulsory exercises.

So, your final grade of this course will be:

(Points you get from this written exam) * 70% + your grade of

compulsory exercises.

If you feel that any of the problems require information that you do not

find in the text, then you should

• Document the necessary assumptions

• Explain why you need them

Your answers should be brief and to the point.

Problem 1 – (40 points)

1) (5 points) Explain what heap overflow is, and list at least three

methods/strategies to defend against heap overflow.

Answer:

(2/5 points) Heap overflow attack is that hackers use malformed

inputs to write its malicious code to overrun a heap’s boundary and to

overwrite adjacent memory locations. The malicious code in the

overwritten location can later be jumped into and be executed.

(3/5 points) Heap overflow countermeasures (to get the 3 points, you

need to list at least three out of the following options):

– Always use safe functions

– Leverage defenses in compilers, e.g. GCC (-fstack-protector),

Windows Visual studio (/GS option, /SAFESEH option,

/SEHOP option)

– Check length when read/write buffer

– Use tools to audit source code (E.g. Coverity)

– Static analysis and code review

– Rewrite software in type safe language

Page 4 of 17

2) (5 points) Explain the Vigenère method to encrypt and decrypt string,

and explain how to crack the Vigenère method.

(2/5 points) Key is a string (e.g. “cafe”), not a single letter. Encrypt:

shift each character in the plaintext by the amount dictated by the

character of the key (with wraparound). Decrypt: does the reverse

(3/5 points) Crack the Vigenère method has two steps.

– Step one is to brute force the length of the key.

First, you guess a key length. Then, for each guessed key length,

you extract ciphertext sequences. For each ciphertext sequence,

you calculate similarities of the “letter of frequencies” of the

extracted sequences and “letter of frequencies” of English.

Then, you choose the length with the highest similarity.

– Step two is to guess each character of the key.

We assume you have found out the key length through step one.

First, you extract the ciphertext sequences based on the key

length. Then, you find out the most common character in the

sequence, e.g., ‘m’. Most likely, ‘m’ is encrypted from letter ‘e’.

So, you can guess key to encrypt the most common character is

‘m’ – ‘e’.

3) (3 points) Explain how confidentiality and integrity are combined in

SSL/TLS, IPSec, and SSH.

(1/3 point) SSL/TLS: First, you calculate MAC from plaintext. Then,

you encrypt plaintext and MAC.

(1/3 point) IPSec: First, you encrypt the plaintext to get ciphertext.

Then, you calculate MAC from ciphertext.

(1/3 point) SSH: First, you encrypt the plaintext to get ciphertext.

Then, you calculate MAC from plaintext.

4) (2 points) Explain the SSL/TLS hand shake process.

(1/2 points) Preparation for shaking process: First, Public Keys(PK)

of Certification Authority (CA), i.e., PK-CA, is embedded in all

browsers and web servers when browser and servers are shipped. The

server needs to generate its Secret Key (SK-Server) and Public key,

Page 5 of 17

i.e. PK-Server. The PK-Server needs to be digitally signed by CA

using CA’s private key (SK-CA) to generate the certificate of the

server. So, the certificate contains information of the server’s Public

Key.

(1/2 points) Shaking process:

– Step 1: the web browser sends request for hand shaking.

– Step 2: the server replies the request by sending back its

certificate. From the certificate, the web browser can get

information of the PK-Server.

– Step 3: the web browser generates the “shared key”. The

“shared key” is encrypted using PK-Server, and is sent back to

the server.

– Step 4: the server decrypts the “shared key” using its SK-Server.

The hand shaking process finishes. Both the web browser and the

server have the “shared key”

5) (5 points) Explain the possible vulnerability of DAC (Discretionary

access control), and explain why Bell-LaPadula model can help

defend against the vulnerability.

(3/5 points) DAC does not distinguish user and process. It is therefore

vulnerable from process executing malicious programs (Trojan

Horse) exploiting the authorization of the user. A scenario could be

that the hacker creates a file, e.g., steal.txt, and give CEO

authorization to write a file, without CEO’s knowledge. Two hidden

operations (Trojan horse), i.e., reading the secret file and writing to

steal.txt, are added to a CEO’s app. The CEO is lured to run the app.

App executes on behalf of CEO (access control checks only the user,

not process). So, reading the secret file and writing the information of

the secret file to steal.txt is allowed.

(2/5 points) In Bell-LaPadula model, the rules are “no write down”

and “no read up”. For the same scenario above, when the hacker

creates the steal.txt file, the hacker can only classify the file into a

low class, e.g., “unclassified”, because we assume the hacker does not

have authority to assign a higher class for the file he/she creates.

When the CEO is lured to run the app with Trojan horse operations, if

the CEO’s app runs with Secret class, the app cannot write to

Page 6 of 17

secret.txt, because of “no write down”. If the CEO’s app runs with

unclassified class, the app cannot read the secret file, because of “no

read up”.

6) (5 points) Explain what the “first one wins” principle of Android is

and why such a principle can be vulnerable.

(2/5 points) Android app can define new permission types. First app

to define a permission also sets the permission’s attribute (e.g.

protection level) regardless of an app that may define the same

permission after that.

(3/5 points) A legitimate app recording heart beat has a permission

type, e.g., read_heartbeat_sensor, the permission should be given

“dangerous” protection level. Attacker wants to use his app to read

heartbeat sensor data.

– Step 1: Attacker lures a user to install a malicious app and the

app defines a new permission type, i.e., read_heartbeat_sensor,

and gives it “normal” protection level.

– Step 2: The user later installs the legitimate app and the app

wants to give read_heartbeat_sensor “dangerous” protection

level. However, the definition of the protection level from the

legitimate app will not succeed, because of “first one wins”

principle. Thus, the attacker can easily read the heartbeat sensor

data, because the protection level is “normal”.

7) (5 points) Explain what web application firewall is in Azure, and

explain why SQL injection, session fixation, session hijacking, and

cross-site scripting can be fully or not fully defended by using the

web application firewall.

(1/5 point) The function of web application firewall in Azure is to

filter out malicious input and output of the web applications deployed

in the cloud.

(1/5 point) SQL injection is very well covered by the web application

firewall by setting rules to whitelist and blacklist malicious inputs and

outputs.

(1/5 point) session fixation can only partially covered the web

application firewall. The web application needs to issue a new token

when the user is logged in.

Page 7 of 17

(1/5 point) session hijacking is hard to be defended by the web

application firewall, especially if the session token is stolen via the

insure communication channel.

(1/5 point) cross-site scripting can partially be defended by web

application firewall. Mostly, reflected XSS can be detected and

prevented. The persistent XSS cannot be detected.

8) (2 points) Explain what BSIMM (Building Security in Maturity

Model) is, and propose how can a software company use such a

model to improve security of own product.

(1/2 point) BSIMM is a prescriptive model that describes what

companies are doing to improve their software security.

(1/2 point) Companies can use BSIMM as measurements to compare

with peers, to compare business units, and to compare themselves

over time.

9) (5 points) Explain what vulnerability the XML External Entities

Attack exploits, how an attacker can exploit the vulnerability, and

how to defend against such an attack.

(1/5 point) Vulnerability: an application that parses XML input

without disabling XML external entity and DTD processing.

(2/5 points) Attack: Using untrusted XML input containing a

reference to an external entity as input to the application. The content

of the external entity is processed by a weakly configured XML

parser.

(2/5 points) How to defend: Disable XML external entity and DTD

processing, or using input sanitization.

10) (3 points) Explain what password salting is, what kinds of attack

password salting can defend against and what kinds of attack it

cannot defend against.

(1/3 point) Salting is a defend to dictionary attack. It includes

additional info. in hash, and the hash password is concatenated with

salt (a random number).

(1/3 point) Can defend against dictionary attack against arbitrary

users.

Page 8 of 17

(1/3 point) It is ineffective to defend against dictionary attack

targeting at a particular account or user.

Problem 2 – (30 points in total)

For each of the code snippets listed below, your task is to:

• Identify all security vulnerability in the code (Note: you may find

more than one vulnerabilities in one code snippet. You need to list

and identify all of them.)

• Explain why these are security vulnerabilities/issues

• Fix the code (You may use pseudo-code for this. Remember to

explain your solution).

Code snippet 1
Source: CWE-384

1. <?php

2. $SessionID = md5($UserName);

3. if (empty($_COOKIE["SESSION_ID"]))

4. setcookie("SESSION_ID",$SessionID);

5. if ($_COOKIE["SESSION_ID"] == $SessionID):

6. echo "Hello ".$UserName;

7. else:

8. echo "Please, enter your credentials";

9. endif;

10. ?>

(2 /30 points) Vulnerability identified: line 2: MD5 is an outdated

encryption

(2 /30 points) Vulnerability fix: line 2, change MD5 to SHA1 or SHA2

(2 /30 points) Vulnerability identified: line 2: predictable session token

solely based on username. An attacker, who knows username of the

victim, can forge the cookie and successfully authenticate against the

web application.

(2 /30 points) Vulnerability fix: line 2, add other information to create

the user session token.

Code snippet 2

1. <form action="changeAddress.php" method="POST">

2. <p><input type="text" name="newAddress" /></p>

Page 9 of 17

3. <p><input type="submit" value="Change Address" /></p>

4. </form>

changeAddress.php

1. <?php

2. session_start();

3.

4. if (isset($_REQUEST['newAddress'])) {

5. change_address($_REQUEST['newAddress']);

6. }

7. echo "<p>Your address has been changed to $newaddress </p>";

8. ?>

Note: change_address () is a user defined function to store the new address into the database. We

assume that this function is secure.

(2 /30 points) Vulnerability identified: changeAddress.php line 5.

Vulnerable to XSS attack, because there is no input sanitization.

(2 /30 points) Vulnerability fix: changeAddress.php line 5. Sanitize the

inputs using blacklist or whitelist.

(2 /30 points) Vulnerability identified: changeAddress.php line 5.

Vulnerable to CSRF attack, because there is no code to check if the

request comes from a legitimate user or not.

(4 /30 points) Vulnerability identified: changeAddress.php line 5. Store

a randomly generated token for each authenticated user. Add security

tokens to transaction pages using hidden field. Verify that server-side

and client-side tokens match.

Code snippet 3

Source: CWE-613

1. <?php

2. if (empty($_COOKIE["SESSION_ID"])):

3. $SessionID = GenerateSecureToken();

4. setcookie("SESSION_ID",$SessionID, time()*3600);

5. elseif (ValidateSession($_COOKIE["SESSION_ID"])):

6. echo "Hello ".$UserLogin;

7. else:

8. echo "Please, enter your credentials";

9. endif;

10. ?>

(2 /30 points) Vulnerability identified: Line 4, Insufficient session

Page 10 of 17

expiration. The session has been last for too long time.

(2 /30 points) Vulnerability fix: Line 4, shorten the duration of the

session.

Code snippet 4

Source: https://www.acunetix.com/blog/articles

1. <html>

2. <head>

3. <title>Custom Dashboard </title>

4. ...

5. </head> Main Dashboard for

6.

7. <script>

8. var pos=document.URL.indexOf("context=")+8;

9. document.write(document.URL.substring(pos,document.URL.length));

10. </script>

11. ...
12. </html>

Note: This is a web page http://www.example.com/userdashboard.html. The result of

http://www.example.com/userdashboard.html?context=Mary would be a customized dashboard

for Mary, containing the string “Main Dashboard for Mary” at the top.

(2 /30 points) Vulnerability identified: Line 8 and 9. The vulnerability is

DOM XSS. The malicious script can be embedded in the URL as

follows

http://www.example.com/userdashboard.html?context=<script>SomeFu

nction(somevariable)

(2 /30 points) Vulnerability fix: Any one of the following will be

regarded as sufficient to get full point.

– Avoiding client-side sensitive actions such as rewriting or

redirection, using client-side data;

– Sanitization of the client-side code by inspecting and securely

handling references to DOM objects that pose a threat, such as url,

location and referrer, especially in cases when the DOM may be

modified;

– Using intrusion prevention systems which can inspect inbound

URL parameters and prevent the inappropriate pages to be served.

http://www.example.com/userdashboard.html?context=%3cscript%3eSomeFunction(somevariable)
http://www.example.com/userdashboard.html?context=%3cscript%3eSomeFunction(somevariable)

Page 11 of 17

Code snippet 5

Source: https://www.hackthis.co.uk

1. <?php

2. $page = $_GET;

3. $filename = "/pages/$page";

4. $file_handler = fopen($filename, "r");

5. $contents = fread($file_handler, filesize($file));

6. fclose($file_handler);

7. echo $contents;

8. ?>

(2 /30 points) Vulnerability identified: Line 4 and 5. Directory traversal

vulnerability. If the input is “view.php?page=../admin/login.php”, then,

instead of getting a file from the pages directory the ../ traverses to the

parents directory so instead gets the file /admin/loin.php. This is very

bad news as it will most likely contain admin or database credentials.

(2 /30 points) Vulnerability fix: Input sanitization. Using regex to

remove all ../s but there are some nice functions built into PHP that will

do a much better job. $page = basename(realpath($_GET)). More details

can be seen at https://www.hackthis.co.uk/articles/common-php-attacks-

directory-traversal.

Problem 3 – (30 points)

Case description:

Company A is developing an IoT (Internet of Things) – based remote

rehabilitation consulting service.

A patient with rehabilitation needs will log each day’s activity using

sensors installed within a wearable device. Using Bluetooth, the

wearable device continuously communicates with an app of company A

running on the patient’s mobile phone (the mobile phone runs on

Android platform). The activity data are stored at an external SD (Secure

Digital) card of the patient’s mobile phone. When the patient wants to

upload the activity data to the web server of company A, the patient

needs to log in the server first and then send the data. After the data is

uploaded to the server, the corresponding data in the SD card will be

https://www.hackthis.co.uk/articles/common-php-attacks-directory-traversal
https://www.hackthis.co.uk/articles/common-php-attacks-directory-traversal

Page 12 of 17

deleted, to save space for new data.

When a therapist wants to read the activity data, the therapist needs also

to log in to the server. Based on some statistical analysis, the therapist

can advise the patient to do certain exercises more often. The advice will

be sent to the patient using emails. The patient pays the therapist based

on advice provided by the therapist.

To use such a service, the patient needs to register his or her personal

information, such as username, password, email address, age, gender,

and some medical record to inform the therapist about the symptoms and

what kinds of advice he or she needs. In addition, the patient can store

credit card information in the server of company A for one-click

payment. If the patient does not want to store the credit card

information, the patient needs to type in such information every time he

or she pays.

The therapist also need to register, and fill in some information, such as

username, password, email address, name, office address, a short CV,

and a bank account to receive the payment.

Your task is to make a risk-based assessment of this application based on

RMF (Risk Management Framework).

Your tasks include:

• Identify business goals, business assets, and business risks (5

points).

(2/30 points) Business goals: List minimum four of the following or

other goals that are valid will get full points.

– The system should be available

– The system should be easy to use

– The payment system should be secure and fast

– The user information should be secure

– Privacy of the user should be protected according to GDPR

(2/30 points) Business assets: List minimum four of the following or

other assets that are valid will get full points.

– Activity/medical data

– Patients, Therapists & Admins credentials

Page 13 of 17

– Encryption keys

– Patients personal data (e-mail, age, gender...)

– Credit card and bank account information

– Therapists personal data

(1/30 points) Business risks: List minimum two out of the following

or other risks that are valid will get full points.

– Legal issue and reputation damage due to bank info. or credit card

numbers are stolen

– Lose business because the system is not available during a

significant amount of time

– Legal and GDPR issue because medical and personal data are

disclosed

– Lose business because the payment system does not work

– Legal issue and reputation damage because user or admin

credentials are disclosed

• Identify at least 10 technical risks using threat modelling. The

technical risks can be relevant to web server of company A and the

mobile application of company A (10 points). (Note: You do not

need to draw the threat modelling graphs. However, you need

explain briefly how the threat modelling, e.g., misuse cases and

attack trees, are applied to help you identify the technical risks.)

(10/30 points), The following are examples of technical risks that are

valid. There are other technical risks that are also regarded as valid,

but not are listed here. If you list 10 valid risks, you will get full

points. Each valid risk will count one point.

– TR1: Brute force guessing of passwords.

– TR2: The attacker can perform SQL injection attack when filling

forms

– TR3: The attacker can inject malicious code when filling forms

– TR4: CSRF attack. The attacker lures therapist to click on links or

run scripts that do malicious operations, e.g., changing medical

record.

Page 14 of 17

– TR5: Attackers can steal information transmitted between web

browser, mobile and server through eavesdropping.

– TR6: SD-card information is stolen and the information is

disclosed to attackers.

– TR7: Session fixation. The attacker gives user attacker’s own

session token, user logs in, and then the attacker’s token is

elevated.

– TR8: Session theft. The attacker steals session information of the

patient or doctor and impersonates them.

– TR9: DDOS. The attacker sends a huge number of packets to the

server and makes the server unavailable to legitimate user.

– TR10: Credentials on the server are stolen and disclosed to

attackers.

– TR11: Secrete keys are not managed properly and are disclosed to

attackers.

– TR12: The attacker modifies the data stored in the system and

misleads the therapist.

• Derive security requirements from each technical risk identified,

and design and describe black-box penetration test cases (including

test steps and expected results of each step) to verify each derived

security requirement (10 points)

(10/30 points) The following are examples of security requirements

and tests that are valid. There are other security requirements and

tests that are also regarded as valid, but not are listed here. If you list

10 valid requirements and tests, you will get full points. Each

requirement and test will count one point. Each test should have test

steps and expected test results.

– Req1: The system should have strong password policy.

– Test1: Perform dictionary brute force password attack.

– Expected test results: The password should not be cracked with

limited effort.

– Req2: Prepared statement should be applied or inputs should be

sanitized everywhere the user can give inputs.

Page 15 of 17

– Test2: Input malicious SQL injection command in every place

where free text can be typed in.

– Expected test results: No SQL injection attack is succeeded.

– Req3: Input sanitization of code injection should be performed at

every place where free text can be typed in and some parts of text

will be echoed back to the browser.

– Test3: Input malicious JavaScript.

– Expect test results: The JavaScript is sanitized and will not

execute.

– Req4: The system should have mechanism to check that all

commands are issued from legitimate users.

– Test4: Log in and get a valid session token. Use the token to call

script of the system from another session.

– Expected results: The script will not execute.

– Req5: All communications between clients and servers should be

encrypted properly.

– Test5: Use eavesdropping tools to collect information transmitted

between clients and servers and read the information.

– Expected test results: The information is encrypted and is not

human-readable.

– Req6: All information in the SD card should be encrypted properly.

– Test6: Download the data from the SD card and open it and read it.

– Expected results: The information is encrypted and is not human-

readable.

– Req7: The system should issue new session token when the user

logs in.

– Test7: Access the website and read the session token received. Log

in the system and read the session token received after log in.

– Expected results: The session tokens should be different.

– Req8: All session should automatically expire after 10 minutes.

– Test8: Log in the system and get the session token. After 11

minutes, use the same token to log in.

Page 16 of 17

– Expected. The log in is rejected.

– Req9: The system should have backup servers to defect against

DDOS.

– Test9: Simulate 10,000 packets and send them to the server.

– Expected results: The system can still respond a request within 3

seconds.

– Req10: All credential files should be encrypted.

– Test10: Download the credential files from the server, open and

read them.

– Expected test results: The information is encrypted and is not

human-readable.

– Req11: All secret keys should be stored in a safe place.

– Test11: Perform various attacks to find the secret key of the

systems.

– Expected results: The secrete key cannot be found in the system.

– Req12: All sensitive data in the system should be hashed.

– Test12: Open the sensitive data in the system and read them.

– Expected results: The sensitive data should appear as results after

hashing, e.g., 256 bits. Another method is to read the software code

to see if a proper hash function has been used to hash the

information before storing them.

• This application must be compliant with General Data Protection

Regulation(GDPR). List data of this application that can directly or

indirectly identify a natural person, and discuss how company A

can address the privacy issue of this application from transparency,

fair use, and minimalization perspectives (5 points)

(2/30 points) These are examples of data that can directly or indirectly

identify a natural person. If you list minimum four out of the

following list or other valid ones, you will get the full points.

– Direct data (patients): email, credit card information

– Direct data (therapists), name, office address, CV, Bank account

Page 17 of 17

– Indirect data (patient): username, medical record, age, gender,

sensor data

(3/30 points) How to address privacy issue from transparency, fair

use, and minimization perspectives. These are just reference answers.

We will also give you full points if you provide other valid answers.

– Transparency: Company A should inform the user what the user

data is used for and who will get access to the data. The data usage

should be logged.

– Fair use: Nobody who are not eligible or who do not need to get

access to certain data should get access to them.

– Minimization: Company A should only collect and store data that

is needed.

