
Page 1 of 11

NTNU
Norwegian University of Science and
Technology

ENGLISH

Faculty of Physics, Informatics and
Mathematics

Department of Computer and Information
Sciences

Sensurfrist: 22. June

Exam in the subject
TDT4240 Software Architecture

Tuesday 27. May 2004

 9:00 am – 1:00 pm

Aids code C:
 Simple calculator allowed.

These specified printed documents are allowed:
• IEEE (2000), "IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems", Software Engineering Standards Committee of the IEEE Computer
Society.

• Kruchten, P. (1995), "The 4+1 View Model of Architecture", IEEE Software, 12(6).
• English-Norwegian dictionary (or to your native language if your not Norwegian) and/or a

English thesaurus (English-English).

Contact person during the exam:
Associate professor Alf Inge Wang, phone 73594485, mobile phone: 92289577

The points show how much each problem is worth in this exam. For each problem, each question has
the same weight unless otherwise stated. The exam has 4 problems giving a total of 60 points.

Good Luck!

Controlled 18th of May 2004

Page 2 of 11

Problem 1 (10 points): Various questions
Answer these questions short:

1.1 What is a design pattern?
A: Design patterns are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context. One person’s pattern
can be another person’s building block.

1.2 What are the advantages by using the Singleton design pattern in a software

architecture?
A: Control the number of instances of a class and to avoid misuse.

1.3 What is Bass, Clements and Kazman’s definition of Software Architecture?
A: software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them.

1.4 What is a variation point in a software product line?
 A: Places in the architecture that we can point to that capture the variation.

1.5 What is a wrapper related to Off-The Shelves components and architecture?
A: Encapsulation of a component within an alternative abstraction. Used for wrapping
software e.g., legacy systems, in a component-based framework.

1.6 What is View fusion in reconstructing software architecture?
A: View fusion is to combine information in a database to create new views in order to
reconstruct a database.

1.7 Why can it be necessary to reconstruct a software architecture?
A: Discover that a legacy system does not have a coherent architectural design, check
conformance against “as-design” architecture, enable maintenance, integration, expansion
reuse of a legacy system, and enable comparison of different systems.

1.8 What is an architectural driver (give examples)?
A: Things that make big impact on the architecture, like the developing organization,
technical environment, business environment, requirements and qualities from
stakeholders etc. Example: Time to market is 5 months.

1.9 What is an architectural strategy?
A: A collection of architectural tactics, which are fundamental design decisions.

1.10 What is the motivation for introducing software architecture into software
development?
A: More predictable development of systems, software architecture analysis is cheap, to
ensure extensibility, performance, availability, etc. Software architecture is the link
between the system’s quality attributes and design.

Page 3 of 11

Problem 2 (10 points): Architecture Pattern, Reference Model,
Reference Architecture or Architecture
Decide if the following model examples are Architecture Pattern (AP), Reference Model
(RM), Reference Architecture (RA) or Architecture (A) according to the book Software
Architecture in Practice. Explain and motivate your choice.

A: Definitions.

• Architectural pattern/style: Description of element and relation types together with
a set of constraints on how they may be used.

• Reference model: A division of functionality together with data flow between the
pieces.

• Reference architecture: Reference model mapped onto software elements and the
data flows between them. Standard decomposition of system components.
Software elements that cooperatively implement the functionality defined in the
reference model.

• Software architecture: See problem 1.3.

2.1 Client-server model:

A: This is an Architectural pattern because it describes some software elements without any
specific functionality and how it is structured.

2.2 OSI model:

Client 1 Client 2 Client 3 Client n

Server

Wide-bandwidth network

… Description: A model
describing a server
providing services to
clients through a wide-
bandwidth network.

Description: Describing how
applications can communicate
through network using layers:
7) Provides services to the
applications
6) Converts the information
5) Handles problems which are
not communication issues
4) Provides end to end
communication control
3) Routes the information in the
network
2) Provides error control
between adjacent nodes
1) Connects the entity to the
transmission media

Page 4 of 11

A: According to the description of the OSI model above, there are three possible. The OSI
model can be viewed as a Reference architecture because it describes software elements and
the structure between them, but also the functionality of each software elements. Another
correct answer would be to call it an Architecture.

2.3 Call-return model:

A: This is an Architectural pattern because it describes some software elements without any
specific functionality and how it is structured.

2.4 Centralized management of control model:

A: This should be classified as a Reference architecture because it presents grouping of
functionality and also identifies some software component structures as parallel instances of
sensor and actuator processes etc.

Description: Top-down
subroutine model where control
starts at the top of a subroutine
hierarchy. The model is only
applicable to sequential systems.
The main program can call
Routines 1, 2 and 3. Routine 1
can call 1.1 or 1.2 etc.

Description: This model is often
used in “soft” real-time systems
which do not have a very tight
time constraints. The central
controller manages the execution
of a set of processes associated
with sensors and actuators.

Page 5 of 11

2.5 Compiler model:

A: The compiler model is a Reference model as it identifies the grouping and functionality of
a compiler and does not say much more about the software elements in it.

Problem 3 (10 points): The CBAM
From the table 1, 2 and 3 and the information below, compute (use straight lines between the
data points in the graph):

• Total benefit obtained from the 3 architectural strategies.
• Return-On-Investment for the 3 architectural strategies and find what architectural

strategy is the best investment.

The data is results from applying the Cost Benefit Analysis Method (CBAM) on a web-
system for selling tickets for cinemas, theatres, music concerts, and sports events.

Total Benefit Obtained can be computed using this formula: Bi = Σ (bi,j × Wj) where:

• B is benefit for each architectural strategy i
• bi,j is the benefit by using strategy I to its effect on scenario j
• Wj is the weight of scenario j

Table 1: Results from prioritizing scenarios with worst, current, desired and best response
levels.

Scenario Vote Worst Current Desired Best
1. Performance (simultaneous users) 20 1000 3000 5000 10000
2. Availability (server failure) 40 10 % fail 5% fail 1% fail 0 % fail
3. Availability (transactions lost) 25 4% lost 2% lost 0% lost 0% lost
4. Usability (% of users need help) 15 40% 20% 0 % 0%

Table 2: Results from assigning utility to the various scenarios.

Description: This model
describes the phases of
a compiler. The phases
represent the necessary
functionality to
implement a compiler.

Page 6 of 11

Scenario Vote Worst Current Desired Best
1. Performance 20 5 70 90 100
2. Availability 40 0 60 80 100
3. Availability 25 15 80 100 100
4. Usability 15 20 60 100 100

Table 3: Effect and cost of using architectural strategies.

Strategy Scenario Cost Current
response

Expected
response

1. Increase computational efficiency 1 500 3000 4000
2. Active redundancy 2

3
1000 5% fail

2% lost
2% fail
1% lost

3. Support for cancel/undo 4 900 20% 5%

A: To compute the total benefit obtained, the return-on-investment, and find what
architectural strategy is best investment, utility response curve for all 4 scenarios must be
made. From this curves the utility of expected response when applying the architectural
strategy can be read from the graph. Note that the numbers can be slightly different depending
on how the graphs are drawn. The conclusion however should be the same.

Utility response curve for scenario 1:

Performance

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000

Users

U
ti
li
ty

By applying strategy 1, we get the expected response 4000 (table 3). By looking at the utility
response curve we get that the utility 80% by applying strategy 1.

Utility response curve for scenario 2 (availability server failure):

Page 7 of 11

Availability server failure

0

20

40

60

80

100

120

0 2 4 6 8 10 12

Server failure in %

U
ti

li
ty

Note that this curve can be flipped horizontally for better readability. By applying strategy 2
on scenario 2 we get the expected response 2% fail (table 3). From the response curve we
find the utility for expected response to be 75%.

Utility response curve for scenario 3 (availability transaction lost):

Availability transaction lost

0

20

40

60

80

100

120

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Transactions lost

U
ti

li
ty

Note that this curve can be flipped horizontally for better readability. By applying strategy 2
on scenario 3 we get the expected response 1 % lost (table 3). From the response curve we
can find the utility for expected response to be 90%.

Page 8 of 11

Utility response curve for scenario 4:
Usability

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

% users need help

U
ti

li
ty

Note that this curve can be flipped horizontally for better readability. By applying strategy 3
on scenario 4 we get the expected response of 5% (table 3). From the response curve we can
find the utility of the expected response to be 90%.

The total benefit obtained from the 3 architectural strategies is (expected utility-current
utility)* Weight:

• B for strategy 1 on scenario 1: (80%-70%)*20 = 200
• B for strategy 2 on scenario 2 and 3 : (75%-60%)*40+(90%-80%)*25 = 850
• B for strategy 3 on scenario 4: (90%-60%)*15 = 450

• Return-on-invest strategy 1: 200/500 = 0,4
• Return-on-invest strategy 2: 850/1000 = 0,85
• Return-on-invest strategy 3: 480/900 = 0,53

Architectural strategy 2 is the best investment.

Problem 4 (30 points): Create an architecture
Read the description below and do the following:

• Identify the most important quality attribute(s) for the system described below.
• Identify architectural driver for the system described below.
• Choose and describe suitable architectural tactics for the problem described below,

and describe how the tactics affect the quality attributes.
• Create a software architecture for the system described below. The architecture must

be described in two views according to the 4+1 view model: Logical view and process
view.

• Motivate for your choice of quality attributes, architectural drivers and the
architectural tactics used in your architecture.

Page 9 of 11

Weather Station System (WSS)
The weather station system (WSS) is a
software system for producing weather
data and weather reports gathered from
physical weather sensors where the WSS
is located. The WSS operates without
any human operator, and gets weather
data from three sensors measuring
temperature, wind, and air pressure as
shown in the Figure to the right.

Stakeholders of WSS can be divided
into three main groups:

• Web users accessing weather data as web pages (HTML) provided by WSS using a
web-browser.

• Web sites accessing WSS to receive weather data as XML. These web sites use the
weather data to present weather information on their own web pages.

• People walking in the mountains or people in boats accessing the WSS through mobile
devices (Personal Data Assistant or mobile phones) or portable PCs using the WAP-
protocol on a GSM mobile network. These stakeholders are dependent on weather data
from WSS in short intervals, to travel safely in the mountains or at the sea. This
information is provided in Wireless Markup-Language (WML).

WSS can provide the following information to other systems (in HTML, XML or WML):

• The temperature, wind speed, and/or air pressure right now.
• The temperature, wind speed, and/or air pressure at a given time.
• Weather report (temperature, wind speed and/or air pressure) for a given time interval

(e.g. from 1200-1500 every 30 minutes, 19th of May 2004).

The weather data is also used by the Norwegian Weather Association to create yearly weather
reports that are used to compare weather year-by-year, month-by-month, and day-by-day.
This data is also used to look at trends in global heating and other weather effects that can be
results of environmental changes.

A: There is no standard solution for this problem, but a sketch of a solution will be given.

• Most important quality attribute(s): Availability and Modifiability. Availability is
important since travellers in the mountains or at sea is dependent on the system to be
safe. Modifiability is important since the system provides several interfaces and it is
likely that this can be extended in the future. Also it is likely that the functionality can
be extended. Also other sensors can possibly be added in the future.

• Architectural driver(s): The availability is clearly an architectural driver for this
system because this system should be able to operate on its own without human
interaction. Also the weather station can be placed somewhere remote which means
that availability must be top priority.

• Choose and describe architectural tactics:
o Suitable availability tactics: Ping/echo, heartbeat, exceptions, voting and

passive redundancy. Redundant hardware both system hardware and sensors is
also useful.

o Suitable modifiability tactics: Maintain semantic coherence, Anticipate
expected changes, hide information.

 Weather
Station
System

Sensor:
Temperature

Sensor:
Wind

Sensor:
Air pressure

Page 10 of 11

o Suitable usability tactics: Use model view controller to separate different
interfaces of the system.

A possible logical view of the weather station system:

The logical view is described in two class diagrams. The first diagram shows how the
architecture should attack the availability problem by using a watchdog (running on a separate
process, preferably on a separate hardware) to ensure that the system is alive. If there is no life
signal from the system, the system should be restarted in a consistent state.

Weather

Station

System

WatchDog

The second class diagram shows how the architecture attacks modifiability and usability:

Weather Sensor

Model

View

User interface

Web XML WML

Weather sensor

Air Pressure Temperature Wind

Weather

Current weather Time specific weather Weather statistics

Weather data

Controller

User request

Process view of the weather station:

Page 11 of 11

The process view is also divided into two parts covering availability and
modifiability/usability respectively.
The process view for availability is shown below:

Weather Station SystemWatchdog

Are you alive?

Alive

Are you alive?

{}
{}

Restart System

More than 30 second

For modifiability and usability the system is divided into four running processes:

• A controller process handling user interaction.
• A model process handing the weather model of the system.
• A sensor data process handling the sensor inputs and storing the sensor information in

a database. Because of the tight coupling of the sensors and the database, one process
is used for this purpose.

• A view process updating the user view.

Controller process Sensor data processModel process

Weather report request

View process

Get weather data

Send weather data

Produce user view

