
Page 1 of 5

NTNU
Norwegian University of Science and
Technology

ENGLISH

Faculty of Informatics, Mathematics and
Electronics

Department of Computer and Information
Sciences

Examination results will be announced: 18. June

Exam in the subject
TDT4240 Software Architecture

Friday 28. May 2008
 9:00 am – 1:00 pm

Aids code C:
 Simple calculator allowed.

These specified printed documents are allowed:
• IEEE (2000), "IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems", Software Engineering Standards Committee of the IEEE Computer
Society.

• Kruchten, P. (1995), "The 4+1 View Model of Architecture", IEEE Software, 12(6).
• English-Norwegian dictionary (or to your native language if your not Norwegian) and/or a

English thesaurus (English-English).

Contact person during the exam:
Alf Inge Wang, phone 7359 4485, mobile phone: 9228 9577

The points show how much each problem is worth in this exam. For each problem, each question has
the same weight unless otherwise stated. The exam has 5 problems giving a total of 70 points. The
remaining 30 points are credits awarded from the software architecture project.

Good Luck!

Salah Uddin Ahmed and Bian Wu

Controlled 8th of May 2008

Page 2 of 5

Problem 1: Various questions (20 points)
Answer these questions shortly:

1.1 What is Bass, Clements and Kazman’s definition of Software Architecture
(the definition in the textbook)?

1.2 What is the quality attribute usability concerned with?
1.3 Give examples of typical response measures for quality attribute

performance.
1.4 How can architectural patterns and design patterns be combined?
1.5 Describe the Abstract Factory design pattern and advantages of using it.
1.6 Describe the three IT architectures presented by Sigurd Thunem (Telenor)

and the areas these architectures address.
1.7 What is the most important architectural driver for commercial IT

architectures according to Telenor?
1.8 What problems are addressed through the Service-Oriented Architecture

(SOA) approach according to Fredrik Dahl-Jørgensen (Accenture)?
1.9 Describe the Service Identification Framework (SIF) in SOA (the main

parts and their relationships).
1.10 How do different stakeholders of a software system influence the software

architecture? Give examples for Developer, Marketing, Customer, End-
user, and Maintainer?

1.11 Describe the difference between an architectural pattern, a reference model
and a reference architecture.

1.12 Describe the three main areas of performance tactics identified by the
textbook.

1.13 Why is it necessary to describe a software architecture through several
views (more than one view)?

1.14 What is the purpose of evaluating the software architecture?
1.15 Describe shortly the process of reconstructing a software architecture as

described in the textbook.
1.16 What is the main difference between ATAM and CBAM?
1.17 What is important to focus on when designing a software architecture for a

software product line?
1.18 What are the challenges when using Off-The-Shelves (OTS) components

in a software architecture?
1.19 What is the difference between a wrapper and a bridge?
1.20 What is architectural drift?

Page 3 of 5

Problem 2: Choose the most appropriate architectural pattern
(5 points)
Nominees:

a) Model-view-controller
b) 3-tier
c) Peer-to-peer
d) Pipe-and-filter
e) Layered
f) Blackboard

Choose the most appropriate architectural pattern for these 5 short descriptions of systems.
Motivate for your choices:

1. A game engine that provides a high-level API to the programmer. The programmer
can also access medium-level and low-level APIs to get a richer set of functionality if
required.

2. An application for cooking recipes that can run on various mobile applications with
various screen configuration (in size) and input devices (keys, touch-based screens,
joysticks, etc).

3. A PC application for analysing weather data through a set of data transformations.
4. An application for exchanging electronic business cards between mobile devices such

as mobile phones, personal data assistants (PDAs), smart phones etc.
5. A distributed collaborative application for sharing various information in a stored in

common database (repository). The various parts of the application that store and
retrieve information from the database should be possible to be replaced dynamically
(run-time).

Problem 3: ATAM (5 points)
Do the step 6 (Analyze the architectural approaches) in the ATAM process on software for
controlling a garage opening system consisting of sensors, motors with activators, and garage
controller to operate the garage door.

Utility tree:

• Availability:
o Scenario A1. The system must be available 99.9% of the time (M,H).

• Performance:
o Scenario P1. If obstacle is detected during lowering the garage door, it

must be reopened within 0.1 second (H,M).
• Security:

o Scenario S1: It should be less than 0.01% chance to get unauthorized
access to the garage controller. (L,M).

Identified architectural tactics:
• AT1: Increase computational efficiency in critical components.
• AT2: Schedule time-critical components wisely.
• AT3: Structure the system to have semantic coherence.
• AT4: Use information hiding.

Page 4 of 5

Problem 4: CBAM (10 points)
From the Table 1, 2 and 3 and the information below, find:

• Total benefit obtained from the 3 architectural strategies.
• Return-On-Investment for the 3 architectural strategies
• Rank the 3 architectural strategies according to best investment.

Use straight lines between the data points in the graph.

The data is results from applying the Cost Benefit Analysis Method (CBAM) on a software
system for managing car rentals.

Table 1: Results from prioritizing scenarios with worst, current, desired and best response
levels.

Scenario Vote Worst Current Desired Best
1. Performance: Highest number of
simultaneous user requests

30 100 users 2000
users

10000
users

100000
users

2. Availability: How much of the time
the server can crash

20 10%
crash

1% crash 0.5%
crash

0 % fail

3. Availability: Time to recover from a
crash

20 10 min 3 min 1 min 0 min

4. Modifiability: Time to add support
for a new type of vehicle

10 8hours 60min 10min 1min

5. Security: Probability for accessing
credit card information

20 1% 0.1% 0.01% 0%

Table 2: Results from assigning utility to the various scenarios.

Scenario Vote Worst Current Desired Best
1. Performance 30 5 40 90 100
2. Availability 20 5 50 70 100
3. Availability 20 5 30 70 100
4. Modifiability 10 5 20 50 100
5. Security 20 5 30 80 100

Table 3: Effect and cost of using architectural strategies.

Strategy Scenario Cost Current
response

Expected
response

1. Replicated servers (hardware and
software)

1
2
3

15000

2000 users
1% crash

3 min

8000 users
0.7% crash

30 sec
2. Improved computational
efficiency

1

4000 2000 users 4000 users

3. Improved exception handling 2
3

3500 1% crash
3 min

0.4% crash
2 min

Page 5 of 5

Problem 5 Design a software architecture using ADD (30 points)
Read the description of the Tippeliga-Ticket system below and do an architectural design
using the attribute-driven design (ADD) method described in the textbook. Your answer
should include:

• Architectural drivers
• Architectural tactics and patterns
• A logical view
• Interfaces
• Verification of the architecture

Note that you should only describe the logical view and only do one level of decomposition!
Motivate for your choices and state your assumptions.

Tippeliga-Ticket System (TTS)
The Tippeliga-Ticket System (TTS) is a system where the users can buy tickets using credit
cards to football (soccer) matches in the Tippeliga (highest division) in Norway over the
Internet using a Web-browser. The user can look at information about future matches from
football teams from all over Norway, and see if there are any available seats. The information
about the football matches is retrieved from various servers with different interfaces provided
by the different teams. Note that the teams in the Tippeliga will change every year. It is
critical that the TSS is available to the users all the time, and it cannot be unavailable for more
than 2 minutes a week. Before important games, such as Champion League games, it is
important that the system does not break down even if over 40000 users try to get tickets at
the same time.

