
Page 1 of 12

NTNU
Norwegian University of Science and
Technology

ENGLISH

Faculty of Informatics, Mathematics and
Electronics

Department of Computer and Information
Sciences

Examination results will be announced: 1. September

Continuation Examination in the subject
TDT4240 Software Architecture

Saturday 9. Aug 2008

 9:00 am – 1:00 pm

Aids code C:
 Simple calculator allowed.

These specified printed documents are allowed:
• IEEE (2000), "IEEE Recommended Practice for Architectural Description of Software-

Intensive Systems", Software Engineering Standards Committee of the IEEE Computer
Society.

• Kruchten, P. (1995), "The 4+1 View Model of Architecture", IEEE Software, 12(6).
• English-Norwegian dictionary (or to your native language if your not Norwegian) and/or a

English thesaurus (English-English).

Contact person during the exam:
Not available

The points show how much each problem is worth in this exam. For each problem, each question has
the same weight unless otherwise stated. The exam has 5 problems giving a total of 70 points. The
remaining 30 points are credits awarded from the software architecture project.

Good Luck!

Page 2 of 12

Problem 1: Various questions (15 points)
Answer these questions in short:

1.1 What is Bass, Clements and Kazman’s definition of Software Architecture (the
definition in the textbook)?

Def: A software architecture is the structure or structures of a system consisting of software
components, their external visible properties and the relationship between them.

1.2 What is the purpose of the ATAM architecture evaluation?
The purpose of the ATAM is to evaluate how a software architecture addresses the most
important quality scenarios (requirements) of a system.

1.3 What is an architectural pattern (style)?
An architectural pattern (style) expresses a fundamental structural organization or scheme for
software system and provides a set of predefined subsystems, specifies their responsibilities,
and includes rules and guidelines for organizing for relationships between them.

1.4 What is architectural erosion?
Architectural erosion is that the implementation violates the architecture.

1.5 Describe the Composite design pattern and advantages of using it.
The Composite pattern is used to obtain a transparent treatment of single and multiple objects
that simplifies the client code and allows arbitrary grouping of elements and uniform
treatment of groups and primitives.

Page 3 of 12

1.6 Describe the CBAM process (9 steps)

The CBAM process:
1. Collate scenarios (prioritize top 1/3)
2. Refine scenarios (worst, best, current and desired)
3. Prioritize scenarios (eliminate)
4. Assign utility for current and desired levels
5. Develop architectural strategies for scenarios and determine quality attribute response
levels
6. Determine the expected utility value of architectural strategy using interpolation.
7. Calculate total benefit obtained from an architectural strategy.
8. Choose architectural strategies based on ROI subject to cost constraints
9. Confirm results with intuition

1.7 What is the purpose of Utility-Response Curve in CBAM?
The Utility-Response Curve describes the usefulness (utility) various responses in the quality
scenario have for the stakeholders.

1.8 How do you calculate the total benefit obtained from an architectural strategy in
CBAM?

Use the formula:
Bi = ∑(bi,j x Wj)
Where:
Bi = Benefit for each architectural strategy i.
bi,j is the benefit by using strategy i to its effect on scenario j.
bi,j is Uexpected – Ucurrent.
Wj is the weight of scenario j.

1.9 Describe the process in the textbook for reconstructing a software architecture.
1. Information extraction: Extract information from various sources.
2. Database construction: Convert information from step 1 to a database format.
3. View fusion: Combines information in the database.
4. Reconstruction: Building abstractions and various representations.

1.10 What kind of information can be useful to extract to reconstruct a software
architecture?

Useful information for reconstruction of software architecture can be static relationship
information like file-file, file-function, file-variable, directory-directory, directory-file,
function-function (call), function-variable (read), function-variable (write), build sequence,
design models. Also runtime information can be used such as polymorphism, function
pointers, runtime parameterization etc.

1.11 Name the different types of architectures that are included in an enterprise
architecture according to Telenor (Sigurd Thunem)?

An enterprise architecture consists of strategy architecture, business architecture, portfolio
architecture and information architecture.

1.12 Name the three main areas the textbook describes for availability tactics.
The three main areas are fault detection, fault recovery and fault prevention.

Page 4 of 12

1.13 What is the purpose of the GRASP (design) patterns?

The GRASP patterns describe the fundamental principles of assigning responsibilities to
objects, expressed as patterns.

1.14 What is a (design) pattern language?
A pattern language is a collection of patterns that build on each other to generate a system. A
pattern in isolation solves an isolated design problem, while a pattern language builds a
system.

1.15 What are the three techniques described in the textbook for repairing interface
mismatch?

The three techniques are wrappers, bridges and mediators.

Page 5 of 12

Problem 2: Choose the correct architectural pattern (10 points)
Buff Tore is hired as a software architect in the Pear software company, where his job is to
choose the correct architectural pattern for the following two systems Pine and Smash. Buff
Tore can choose among the following architectural patterns:

1. Pipe and filter
2. Layered
3. Blackboard
4. Task Control
5. NASREM

2.1 Choose and motivate for your choice of architecture pattern for the
Pine system (5 points)
The Pine system should have the following characteristics:

• The main parts of the system will remain the same for many years (stable).
• The Pine system should be possible to tailor for each customer, typically the user-

interface and look & feel of the system.
• The Pine system should be possible to run on various operating systems and

hardware platforms.

The architectural pattern that fits best to the Pine system is the layered pattern. The layered
pattern makes it easy to create a stable part of the system implemented through several layers
of abstraction. The bottom layers will handle the hardware and operating specific features
making it possible to run the system on various hardware and operating systems. The top
layer is the customer specific layer that is easy to change to tailor customer specific needs.

2.2 Choose and motivate for your choice of architecture pattern for the
Smash application (5 points)
The Smash system is an application for changing audio in real-time by applying audio effects.
The system has the following characteristics:

• Several audio effects can be applied to the input audio one after another.
• The implementation of the audio effects might be changed to improve

performance.
• New audio effects might be added to the application in later releases.

The architectural pattern that fits best to the Smash application is the pipe-and-filter pattern.
The pipe-and-filter pattern fits very well as there is audio input that will be transformed
through various filters. The pipe-and-filter pattern will make it easy to update filters both in
terms of performance and sound, and it will also be easy to add new audio effects in the future
by just adding another filter.

Page 6 of 12

Problem 3: ATAM (5 points)
Do the step 6 (Analyze the architectural approaches) in the ATAM process based on the
following information about a system for selling tickets over the web:

Utility tree:

• Usability:
o Scenario U1. The client user should be able to correctly use 90% of the

functionality of the application after using the system for 5 minutes (M,H).
• Performance:

o Scenario P1: 10000 simultaneous users should have a response time less
than 1 second under normal operation (H,M).

Identified architectural tactics:

• Reduce the number of events processed – when more than 8000 users use the
system at the same time, the number of users above 8000 will get lover processing
priority.

• Replication of server PCs – The server application is replicated on two PCs to
process more user requests.

• Scheduling of resources – the scheduling of processing resources is based on first
come – first served.

Scenario U1 is not relevant to the identified tactics.
Scenario: P1: 10000 simultaneous users requests (H,M)
Attribute: Performance
Environment: Normal operation
Stimulus: Client request
Response: Response in less than 1 second
Tactic Sensitivity Tradeoff Risk Nonrisk
P1.Reduce number events S1 R1
P2.Replication server S1 N1
P3.Schedule resources T1 R2
Reasoning:
The tactics used are well-known and well-proven tactics for performance. P2 is considered
safe and easy to implement. P1 and P3 make the system more complicated and must have
extra attention to be designed and implemented robustly. T1 and T3 are very dependent on the
choice of algorithm and design.

Sensitivity points/tradeoff points:
S1: Will improve performance and availability.
T1: This tactic improves performance but might cause negative effect on availability.

Risk/Nonrisks:
R1: P1 is a risk as it only guarantees for 8000 users and does not guarantee for the extra
2000 according to the quality scenario.
N1: P2 is considered a safe tactic with no or little negative effects other than extra costs.
R2: P3 can be a risk depending on the design and implementation. Also another scheduling
algorithm might be better for this application.
Risk themes:
A risk theme for this scenario is how the tactics are design and implemented.

Page 7 of 12

Problem 4 (10 points): The CBAM
From the Table 1, 2 and 3 and the information below, find:

• Total benefit obtained from the 3 architectural strategies.
• Return-On-Investment for the 3 architectural strategies
• Rank the 3 architectural strategies according to best investment.

Use straight lines between the data points in the graph.

Table 1: Results from prioritizing scenarios with worst, current, desired and best response
levels.

Scenario Vote Worst Current Desired Best
1. Performance (Time to pick up and
deliver 4 balls to the light)

30 20min 10min 4min 3min

2. Availability (How many times the
robot get stuck during the mission
picking up balls)

20 30 % fail 10% fail 4% fail 0 % fail

3. Availability (How many times the
robot controller software crashes)

15 20%
crash

5% crash 0% lost 0% lost

4. Modifiability (Time to add
readymade module)

20 60min 30min 15min 5min

5. Testability (Time to test robot
movements)

15 5hours 2hours 20min 5min

Table 2: Results from assigning utility to the various scenarios.

Scenario Vote Worst Current Desired Best
1. Performance 30 30 60 90 100
2. Availability 20 20 70 90 100
3. Availability 15 30 80 100 100
4. Modifiability 20 15 60 70 100
5. Testability 15 5 30 90 100

Table 3: Effect and cost of using architectural strategies.

Strategy Scenario Cost Current
response

Expected
response

1. Use route-planning 1 2000 10min 7min
2. Improved wall detector 2

3
800 10% fail

5% crash
6% fail

5% crash
3. Improved exception handling 2

3
400 10% fail

5% crash
10% fail
2% crash

Solution:
To compute the total benefit obtained, the return-on-investment, and find what architectural
strategy is best investment, utility response curve for scenarios 1-3 must be made (scenarios
4-5 can be ignored as there is not defined any tactics that will affect them). From these curves
the utility of expected response when applying the architectural strategy can be read from the
graph. Note that the numbers can be slightly different depending on how the graphs are
drawn. However, the conclusion should be the same.

Page 8 of 12

Utility response curve scenario 1:

• Using tactic 1 on scenario 1: 7 minutes pickup time gives 78% utility.

Utility response curve scenario 2:

• Using tactic 2 on scenario 2: 6% fail gives 82% utility
• Using tactic 3 on scenario 2: 5% fail gives 70% utility

Tactic 2
Tactic 3

Page 9 of 12

Utility response curve scenario 3:

• Using tactic 2 on scenario 3: 5% crash gives 80% utility
• Using tactic 3 on scenario 3: 2% crash gives 92% utility

Total benefit on tactics 1, 2 and 3:

B1 = (78-60) x 30 = 540
B2 = (82-70) x 20 + (80-80) x 15 = 240
B3 = (70-70) x 20 + (92-80) x 15 = 180

Return-on-investment on tactics 1, 2 and 3:
ROI1 = 540/2000 = 0,27
ROI2 = 240/800 = 0,30
ROI3 = 180/400 = 0,45

Ranking of tactics (from best to worst):
1 Tactic 3: Improve exception handling
2 Tactic 2: Improve wall detector
3 Tactic 1: Use route-planning

Tactic 2

Tactic 3

Page 10 of 12

Problem 5 Create an architecture (30 points)
Read the description below and do the following:
5.1 Identify the architectural drivers for the system described below (5 points)

The architectural drivers of the system are variation in hardware components and
configurations (modifiability), availability of the software (the software on the camera should
not crash) and time-to-marked (hard competition in bringing new models to the marked first).

5.2 Choose and describe suitable design and/or architectural patterns for the problem

described below, and describe how the patterns affect the quality attributes (5 points)

The most obvious architectural patterns are model-view-controller pattern to make it easier to
change the GUI. In general, it is important that the software architecture is flexible so that all
the main components can have different variations that can be configured when the software
is compiled (e.g. allow various storage technologies, etc). Various design patterns can be
used, but one candidate is the observer-pattern to implement the model-view-controller.

5.3 Create architecture views of the system described below. The architecture must be

described in two views according to the 4+1 view model: Logical and Scenario view (20
points)

Motivate for your choice of quality attributes, architectural drivers, design patterns and the
architectural patterns used in your architecture. State your assumptions.

Software for a simple digital video camera
The software described here is software that is used in the controller of various simple video
cameras. The software should be able to provide different levels of functionality depending on
the price segment of the video camera and the software should be able to be used for various
kinds of hardware configurations (buttons, screen, data storage and optical components).
The video camera consist of these hardware components:

• Controller (CPU, memory): managing the other components, provide interface with
the user etc.

• Controller buttons (vary from camera to camera). Typically buttons for on/off, video
record, video player, night shot, menu, navigation, zoom etc.

• Digital screen (can vary from camera to camera in size, colour depth etc).
• View finder (small screen in the back of the camera).
• Permanent data storage (typically hard drive, flash-memory, memory stick, SD-cards

etc).
• Optical component with an interface to control zoom, focus, etc....

Here is a list typical functionality offered by the video camera:

• Turn on/off camera.
• Playback video on screen.
• Record video to permanent data storage.
• User controlled optical functionality (zoom out, zoom in etc).
• Camera controlled optical functionality (auto focus, lens opening etc).
• Power save functionality (shut down camera if not used etc).
• Storing, retrieve and delete videos.

Page 11 of 12

• Processing video effects.
• Display information to the user on the camera’s screen.
• Video camera set up (storage options, GUI-options, language options etc.)

Scenario view:

The scenario view shows the main user interactions (use cases) involving the main parts of the
system (screen, optics and storage).

Page 12 of 12

Logical view:

The logical view is based on the model-view controller architectural pattern. In addition, the
logical view models the variation points in the architecture allowing various configurations in
terms of screens, buttons, optical devices and storage devices. The logical view also identifies
the main user services provided by the controller.

