

Department of Computer and Information Science

SOLUTION for Examination paper for TDT4240
Software Architecture
The English version is the reference version of the examination paper!

Examination date: Tuesday June 11th 2016

Solution	Problem	1	(10	points)	
1.1 The software architecture of a system is the set of structures needed to reason

about the system, which comprise software elements, relations among them, and
properties of both.

1.2 Reduce size of a module, Increase cohesion, Reduce Coupling, Defer binding.
1.3 Reasons why software architecture is important: Tool to realize a system’s

quality attributes, reason and manage changes in a system, prediction of a
system’s qualities, enhances communication among stakeholders, careful
planning of most fundamental hardest-to-change design decisions, defines
constraints on implementation, dictates structure of an organization and vice
versa, basis for evolutionary prototyping, enable reasoning about cost and
schedule, enable evaluation of system before implemented, provide a reusable
model that can form a product line, reducing design and system complexity,
foundation for training...

1.4 The purpose of architectural views is that it makes it possible to address
concerns of different stakeholders with varying interests. It is also impossible to
cover all the complexity of a software architecture in one single view.

1.5 A sensitivity-point describes how a design decision will affect only one quality
attribute (usually positively), while a tradeoff point describes how several
quality attributes are affected both positively and negatively.

1.6 CBAM includes an economical analysis and is used to find the architectural
decisions within the resources available.

1.7 CBAM process:
Collate scenarios
Refine scenarios (worst, best, current, desired)
Prioritize scenarios
Assign utility to current and desired levels
Develop architectural strategies and determine quality attribute response levels
Determine expected utility value of architecture strategy using interpolation
Calculate total benefit for architectural strategy
Chose architectural strategies based on Value for Cost
Confirm results with intuition.

1.8 A game loop where the drawing of frame is not done until the AI and collisions
are calculated is likely to have a unstable frame-rate depending on the number of
enemies and the situation in the game, compared to a game-loop with full
decoupling of the AI and collision calculations.

1.9 Context, Problem, Solution
1.10 Creational: Factory, Singleton
1.11 Structural: Composite, Proxy, Façade
1.12 Behavioral: Observer, State, Strategy
1.13 Statistical or Markov models (probability models)
1.14 Cost in terms of number/size/complexity of affected artifacts, Cost in terms of

effort, Cost in terms of time, Cost in terms of money, Cost in terms of the extent
modifications affect other functionality or quality attributes, Cost in terms of
introduction of new defects.

1.15 Reconstruction process: Information extraction, Database construction, View
fusion, Reconstruction of the architecture

1.16 Enable maintenance/integration/expansion/reuse of legacy system, enable
comparison of different systems, check conformance against as-design
architecture.

1.17 A designed architecture is a planned architecture (as-design architecture), while
a reconstructed architecture is the architecture as the system was implemented
(as-is architecture)

1.18 When you want to develop software for many similar products with some
variations but that share some common reusable features.

1.19 Give a structured overview of the quality requirements organized according to
quality attributes.

1.20 If need to be able to operate a single object and multiple objects with the same
operations.

	Solution	Problem	2	(5	points)	
1. a) Layered: The example consists of components of different abstraction

levels, from the hardware abstraction level, the core basic functionality, to the
higher level component with an application API.

2. j) Multi-tier: The description fits perfectly the definition of a multi-tier
architecture consisting of a presentation tier, an application tier and a data tier.

3. f) Peer-to-Peer: As it is important that a lot of nodes share services and
resources and they operate all at the same level, this is peer-to-peer.

4. b) Broker: The description shows that there must be an indirect part between
those who request services and those who provide the services – which will be
the broker.

5. c) Model-View-Controller: The description is all about separating the data and
the visualization of data, which it easy to do through model-view-controller.

Solution	Problem	3:	Edge-dominant	system	(5	points)	
a) The metropolis model:

The metropolis model represents three communities and is not an architectural
diagram:

• Customers and end-users
• Developers
• Prosumers – Users who both produce and consume content

The model identifies different types of stakeholders:
• Outermost does not contribute with content, but provide requirements for the

Edge-dominant system
• Middle are prosumers, which is important to support through tools and APIs
• Core: Stable and robust software with collection of APIs available for

prosumers.
b) Open source: Users can go from end-user to developer to core developer

Open content: users go from end-user to contributor.
 	

Solution	Problem	4:	Cloud	Architecture	(4	points)	
a) Software as a Service (SaaS): Consumer uses applications running on a cloud

(e.g. Google Docs).
Platform as a Service (PaaS): Provides a development and deployment
platform in the cloud (e.g. the LAMP stack, Linux, Apache, MySQL, Python.
Infrastructure as a Service (IaaS): Provides a virtual machine for the developer
or system administrator who can run any operating system and software on the
virtual machine.

b) Economies of scale (power costs, infrastructure labor, security & reliability,
hardware cost), Utilization of equipment (time of day, time of year, resource
usage patterns, uncertainty), Multi-tenancy (single application for multiple
consumers – save help desk support, upgrade all, single version)

Solution	Problem	5:	Quality	Attribute	Scenario	(6	points)	
a) Quality attribute scenario on usability:

Source: New user of Spotify
Stimulus: Learn to use all functionality in Spotify
Environment: Runtime
Artifacts: The whole system (Spotify)
Response: Provide searchable help functionality to help the user discover and find

 functionality
Response Measure: Learn to use all functionality in Spotify in average 15 minutes

b) Quality attribute scenario on availability:

Source: Hard drive
Stimulus: Crash
Environment: Normal operation
Artifacts: Music library database
Response: Notify system administrator about hard drive failure
Response Measure: Redundant hard drive will take over with no downtime for user

c) Quality attribute scenario on performance:

Source: 100 000 simultaneous user clients
Stimulus: Periodic music search request
Environment: Normal mode
Artifacts: Spotify music database server
Response: Respond to the user request
Response Measure: Average latency 1 second.

Problem	6	Design	a	software	architecture	(30	points)	
a) Architectural Significant Requirements/Architectural Drivers – 2 points

• ASR1: Modifiability: Should support a variety of user interfaces and

functionality configuration including different buttons and screens and
interaction through network using smart phone. It should also be easy to
update various parts of the system.

• ASR2: Performance: The robot lawnmower must be able to stop or change
direction before harming an object.

• ASR3: Availability: The robot lawnmower must be able to operate for weeks
without software crash or getting physically stuck.

b) Architectural tactics and patterns – 3 points
Modifiability:

• Increase Cohesion
• Reduce Coupling
• Generalization
• Model-View Controller
• Elfes Reference Architecture (Layered)
• State pattern

Performance:
• Prioritize events
• Reduce overhead
• Schedule resources

Availability:
• Self-Test
• Exception Handling
• Heartbeat

c) Process view – 8 points
The process view shows the states of the software running the mower, as well as
the software that runs the heartbeat that checks if the mower system software is
running.

The state diagram for the mower system software can be the following:

 After starting up the mower, the system will be in an Idle state. If the battery is not
full, it will go to Charging state until the battery is fully charged. The mower system
software will go from the Idle to Gras cutting state if the user will initiate it using the
user interface on the mower, or it will be initiated by the software if the user has
chosen the automatic mode or schedule mode. The mower will go from Gras cutting
state to Move around object state if an object to be avoided is detected, and will return
to Gras cutting state after objects has been avoided. If the battery is low, it has started
to rain or the mower is fished cutting the grass, it will go to Return to Base state
where the lawnmower will move back to Base, and avoid objects if detected (Move
around object state) on its way back. When the mower has returned back to its Base,
it will change to Idle state.
If the user turn off the mower or the system fails, it will shut down the system.
The second state diagram shows the lifecycle of the heartbeat mechanism:

d) Logical view – 14 points

The logical view is design by combining two main architectural patterns: The model
view controller and Elfes Reference Architecture, which is a layered architectural
pattern. The first layer is the hardware abstraction layer, which deals with interfaces
to the physical hardware related to sensors and activators. Cutter is a motor for
adjusting the height of the grass cutter, and robot movement involves the motors and
activators for moving the robot around. The hardware layer is kept outside the MVC,
as it is not related directly to none of them.

The Sensor interpretation layer will handle the input for the sensors and produce raw
data. The Sensor integration layer will combine sensor raw data (e.g. over time,
remove noise), to get higher quality sensor data at a higher abstraction level. The
Real-world modeling layer models the surround world of the robot using the data
from the sensor integration layer. The Navigation layer manages basic local
navigation using the world model from the layer below. The Control layer makes a
plan for local navigation based on data from Real-world modeling. This layer also
contains an Object avoidance class which can avoid detected objects which should be
avoided. The Object avoidance class short-cuts the two top layers, to make it more

efficient. This means that the Object avoidance class can initiate movements of the
mower without going through the Global Planning and the Supervisor.
The Global Planning layer is responsible for high level scheduling and planning of the
robot’s actions.
The final layer in the Elfes Reference Architecture (Supervisor) is placed in the
controller. The Supervisor is responsible for overall decisions on what the robot
should do according to the mode it operates in (manual, scheduled, or automatic), and
the state it is in (Idle, Charging, Grass cutting, Move around objects or Return to
base). The Supervisor uses the State design pattern. The two other classes in the
controller are the Scheduler (which keeps track of time (to start cutting grass at time
intervals), and Alive which will send a message to another hardware unit every 5
second. Alive can also force a re-start of the system software.
The View consists of variations of UI through a generalization: LCD & buttons,
Touch and Smart-phone. The Smart-phone interface uses a Network component< to
communication with the smart phone over Wi-Fi or 3G/4G.

e) Architectural rationale – 3 points

The emphasis of the design is on modifiability, availability and performance. The
Elfes Reference Architecture (layered) and Model-View controller patterns were
combined to allow maximum flexibility in terms of modifiability. The performance
issue for the mower was to ensure to avoid objects in time. This was solved by short-
cutting the two top-layers if an object which had to be avoided was detected.
Availability has been solved using heartbeat to a separate hardware unit, which will
initiate a hardware reset if no heartbeat is received within 5 seconds.

