Side 1 av 6

	NTNU
Norwegian University of Science and Technology

ENGLISH
	Faculty of Physics, Informatics and Mathematics

Department of Computer and Information Sciences

[image: image1.png]

	Sensurfrist: 2011-07-01
	

Exam in

TDT 4242 Software Requirements and Testing

 Friday June 10, 2011
 9:00 am – 1:00 pm

Aids allowed A:

Pocket calculators allowed

All printed and handwritten material is allowed
Contact person during the exam:

Professor Tor Stålhane,
phone 73594484

Good Luck!
Introduction

In this exam you can score a maximum of 50 points. The remaining 50 points for the semester comes from the compulsory exercises.

If you feel that any of the problems require information that you do not find in the text, then you should

· Document the necessary assumptions

· Explain why you need them

Your answers should be brief and to the point.
The following set of solutions is only one of many ways to answer this exam. It is totally acceptable for the censor to use his own judgement and give full score to other solutions if his experience says that this is OK.
Problem 1 – Requirements engineering (20 points)
The company “The Crazy 15” – also known as C15 – is a company that develops software for industrial process control over a wide range of application domains. C15 has little explicit domain knowledge. Instead they are good at cooperating and communicating with domain experts, usually from the customers’ sites. The functionality of the control software is fixed early in the project and only the GUI – Graphical User Interface – is changed once the requirements are documented.
Up till now, the requirements elicitation has been done in a rather ad-hoc manner. However, due to some problems in the two latest projects, C15 has decided to start using a predefined and documented process for requirements elicitation. After some research, they are down to two methods: Use Cases – diagrams and text – and Goal Oriented Requirements Engineering, also known as GORE.
1a – Strong and weak points – 10 points

Describe the strong and weak points of the two methods Use Cases and GORE from the point of view of the C15 company.
Use case:

· Strong points:
· Easy to communicate to the customers and use as a basis for discussions
· The use case diagrams are easy to understand

· The textual use cases can be written so as to be close to the users’ process

· Both used case diagrams and textual use cases can be developed in a stepwise manner as our understanding of the problems improve

· Weak points:

· When we use textual use cases it is hard to get an overview of the full functionality

· Advanced and useful concepts such as <<include>> and <<extend>> are difficult to understand for most users

GORE:

· Strong points:

· Help us to focus on “what to achieve” instead of “how to achieve it”

· Has useful patters such as “achieve”, “prevent” and “maintain” which help us to organize the elicitation process

· Have clear rules that can be used to decide when we have goals, sub-goals, assumptions and concrete requirements.

· Weak points:

· Users in general do not really think about goals – they think about jobs or missions.

· GORE is more abstract than use cases, thus putting the analyst in the driver’s seat, running the risk of leaving the user behind.
1b – Method selection – 10 points
Select one of the two methods described in problem 1a for use in the C15 company and explain why you chose the one over the other.

The C15 company has little explicit domain knowledge and they thus need a method that will improve communication with the customer. That means that they should select use cases as their preferred requirements elicitation method. Using GORE would force them into the driver’s seat but without a driver's license.

Problem 2 – Testing methods (15 points)

The V-model – see appendix 1 – connects testing activities and development phases or activities in a software development project. This model also holds for agile projects, which can be considered as a sequence of waterfall projects, each with its own V-model.
2a – Methods choice – 5 points
1. Select a testing method for each testing activity in the V-model

For testing activities where several methods are identified, the student needs only to identify one of them in order to get a full score. There needs to be a certain amount of substance in the answer. E.g. “black box” is not enough to get a full score for unit testing.
· Unit testing – white box test with full path coverage
· Integration testing, also called interface testing – build and test the system stepwise with assertions plus fakes or mock-ups.
· Systems test – black-box test based on requirements
· Acceptance test – black-box test, based on requirements or a scenario-test
2. Give a short description of the methods you have chosen and explain why you chose these methods.

Both the description and the reason why the method was chosen are needed in order to get a full score.
· White box test with full path coverage.

· Description: identify all predicates and paths in the code – e.g. for each method. Identify the predicate combination needed for executing each path and run the tests.
· Why chosen: will make sure that all paths through the code are tested.
· Stepwise testing with assertions based on stepwise integration using mock-ups.

· Description: start with one component – e.g. a class – and the code needed to instantiate it. Write the mock-ups needed for this class. Insert assertions needed to check that the mock-ups behave as expected. Run tests and replace mock-ups with real components successively.
· Why chosen: will give a controlled integration process. Assertions will help us to make sure that each component use its environment in a correct manner and deliver the expected services to the other components
· Requirements based black-box testing.

· Description: identify all requirements and a set of user jobs / missions. Write tests for each requirement and for each combination of requirements needed to achieve the identified missions. Run the tests. If error handling is not part of the requirements this will have to be tested separately. Note – the mission part is a bon but is not needed to obtain a full score.
· Why chosen: basing the system test on a complete set of requirements will make sure that all requirements are covered. In addition, we will test that errors are handled properly.
· Scenario testing:
· Description: scenario testing is based on a description of one or more scenarios – sequences of events that will or may occur when the system is put into use at the customers’ sites. The scenarios are run through by the customers’ users in real time under the guidance of a “game master” that makes sure that all events in the scenario are included in the test.
· Why chosen: scenario testing gives a realistic test of the system plus its uses and the users’ environment. Problems related to both functional and non-functional requirements can be identified.
2b – Testing methods – 10 points
Integration testing is important in all iterative software development.

1. Explain why efficient integration testing is of especial importance in iterative development.

Iterative development means that we repeat the following cycle over and over again (1) develop small chunks of code, (2) integrate them into the existing code base and (3) test that the new add-ons did not break the code base. Thus, each test is an integration test.

2. Explain in details how you would perform integration testing in the most efficient manner.
Problem 3 – Non-functional requirements (15 points)

As part of the contract for a large hospital system, we have promised that

· All defects that occur during the first two years of operation will be corrected free of charge.

· The mean time to failure – MTTF – will be better than 3 months with 5 simultaneous users – one at every floor in the building. We will assume that the system is used all the time and that there is 30 days in a month.
1. Due to our promise to fix all defects occurring during the first two years of operation free of charge, management wants an estimate of the number of remaining defects when we ship the system. In addition, the QA department want an estimate of the initial number of defects in the system – the number of defects present when we start the acceptance test.
a. Explain how we can estimate these two numbers

The student is only required to give one answer. The two alternatives are included to show some of the possible solutions.

· Error seeding and testing - use the number of real defects found (N) and the number of seeded defects (S0) and the number of seeded defects found (s) to compute the number of defects (N0) using the formula N0 = N*S0/max {s, 0.5}
· Experience values – average number of initial defects and number of defects after acceptance testing per 1000 lines of code

b. Discuss the strong and weak points of using this method

· Error seeding:

· Strong points: simple to use, is supported by a solid body of statistical theory and will reflect important system properties such as complexity and size
· Weak points: depends heavily on our ability to insert realistic defects into the code. This problem can be partly solved by reinserting errors that have been removed in earlier tests – e.g. unit tests.
· Experience values:

· Strong points: easy to obtain once we have collected the necessary data
· Weak points: is an estimate based on average values. Including data variance in the estimates for a single system may produce large and thus useless estimation intervals.

2. Explain how we can estimate
a. a lower limit for the MTTF at time of shipping the system.

· The simple solution is to use the expression MTTF >= e*T/N0, where T is the total time on test.
· It is also possible to use the assumption of exponential reliability and set MTTF = 1/. With reasonable assumptions of  and , we can use a sequential test model to find the number of fault-free tests needed for the required MTTF.
b. the amount of testing – person hours – needed to reach our goal – MTTF > 3 months with 5 users if we have estimated the initial number of defects to 10.

· We assume that the five users use the system independently. Thus, we need a total MTTF of 5 * 3 months = 15 months. This gives use 15 = e*T / 10 with T in months and 15*30*24 = e*T / 10 with T in hours. This gives T = 39706 hours of test or approximately 40 000 hours. We should subtract only 1 point if they forget to multiply MTTF by 5. A discussion on how to be able to achieve this total time on test is a bon but not necessary for a full score.
Appendix 1 – the V-model
[image: image2.jpg]

