
Side 1 av 7

NTNU
Norwegian University of Science and
Technology

ENGLISH

Faculty of Physics, Informatics and
Mathematics

Department of Computer and Information
Sciences

Sensurfrist: 2012-06-19

Exam in
TDT 4242 Software Requirements and Testing

 Saturday May 19, 2012
 9:00 am – 1:00 pm

Aids allowed A:
 Pocket calculators allowed

All printed and handwritten material is allowed

Contact person during the exam:
Professor Tor Stålhane, phone 73594484

Good Luck!

Side 2 av 7

Introduction
In this exam you can score a maximum of 50 points. The remaining 50 points for the semester
comes from the compulsory exercises.

If you feel that any of the problems require information that you do not find in the text, then
you should
• Document the necessary assumptions
• Explain why you need them

Your answers should be brief and to the point.

Problem 1 – Requirements engineering (20 points)
The case is a common traffic light with car sensors in all lanes leading into the crossing – see
diagram in appendix 1.

1a – Temporal patterns – 10 points
Use the informal temporal patterns – see appendix 2 – to describe the two upper levels of the
traffic light's control unit

It is important that the circle (and-symbol) is used in the goal decomposition.

1b – Textual use cases – 10 points
Write a textual use case for the following situation:

• Lanes C – D have green light.
• A car arrives in lane A and the lights shall change so that this car can pass through the

crossing

State Lanes C – D has green light
Triggering event A car arrives in lane A – priority lane
Sequence
number

Input System action

1
The lane A
sensor is set to 1
(high)

Lights in lanes C and D are set to amber – empty the
crossing
Start timer 1 – 60 seconds
Start control timer

2 Lights in lanes A and B are set to red / amber – get ready
Start timer 2

3 Timer 1 releases Lights in lanes C and D are set to red

Side 3 av 7

or sensors in
lanes C and D
are set to 0 (low)

4 Timer 2 releases Lights in lanes A and B are set to green
5 Stop control timer
- - End of use case

6 Control timer
releases Register that something is wrong

7 Set lights in all lanes to blinking amber

8 Report error to central computer
Inhibit all lane sensors

- - End of use case

Note: handling of a control timer and steps 6 – 8 are not needed to get a full score.

Problem 2 – Testing methods (15 points)

2a – Methods choice – 5 points
1. Describe strong and weak points for using random testing

• Strong points:
o Can be done automatically
o Can generate many tests in a short time

• Weak points
o Needs an oracle for automatic checking
o Otherwise, only manual checking is possible

2. Describe strong and weak points for using domain testing
• Strong points

o Is efficient – need only one test-set per domain – on- and off-points
• Weak points

o It is difficult to identify domain borders for large pieces of software

3. Give one example where we should use random testing and one examples of where we
should use domain testing

• Random testing – crash test. Generate random inputs, both correct and illegal

ones. No oracle is needed except for crash – no crash.
• Domain testing. Small components – e.g., small classes or methods inside a class

where it is easy to identify the domain borders.

2b – Testing methods – 10 points
The most critical failure that can occur for a traffic light is that it gives a green light for two
crossing lanes at the same time.
1. Explain why random testing is a good way to test this requirement

It is simple to

• generate inputs – only 1 or 0 from each sensor with random time intervals
• check the result – status of the two pairs of traffic lights

Side 4 av 7

2. Give a short description of a test strategy that can be used to test the requirement "The
system shall not at the same time give a green light for two crossing lanes"

A black box test will be sufficient. There are four inputs that can only be 1 (car present)
or 0 (no car present). Thus we can easily construct four random input generators. The
oracle is simple and can be automated – report an error if we get green lights for two
crossing lanes.

It is important to note that this test will only test the software. The rest – traffic lights
plus lane sensors must be tested using e.g., scenario testing.

Problem 3 – Non-functional requirements (15 points)
The software in the traffic light system controller shall be easy to extend – e.g., with extra
signal lights for pedestrians – and easy to maintain.

Write a set of requirements with corresponding tests for maintainability and extendability for
the software of the traffic light control system.

We will take the definition of maintainability in ISO 9126 as our starting point. Note –
extendability is not part of this standard and we will thus focus on maintainability.
According to ISO 9126, maintainability consists of:

• Analysability
o Requirement: there should be a complete traceability matrix for functional

requirement code
o Test: manual spot check – the code traceability matrix is checked tor three

requirements
• Stability

o Requirement: no global variables are allowed and components that belongs
together should be organized using a facade pattern

o Test:
• Changeability

o Requirement: strict adherence to company naming conventions.
o Test: manual spot check – the naming used is checked in the four largest

components.
• Testability

o Requirement: complete traceability between functional requirement test
and strict adherence to analysability requirements

o Test: manual spot check – the test traceability matrix is checked tor three
requirements

• Maintainability – overall requirements and tests
o Requirements: small changes – estimated to be less than 50 statements –

shall take less than two person-days. Medium changes – estimated to be 51 to
100 statements – shall take less than five person days. There are no
requirements for large changes – estimated to be more than 100 statements.

o Tests: we need to test both insertion of new functionality (extendability) and
the correction of a fault (maintainability).
 Fault: a fault that requires a small change is inserted into the code.

The time needed to fix should be less than two person-days.

Side 5 av 7

 Extension: request a change in functionality that requires 50 – 100
statements of new or changed code. The needed time should be five
person-days or less.

Note: it is OK to give full score to students who have only used requirements and tests for
maintainability. The number of statements used is not critical but it is unreasonable to set
the same requirements of resources for all kinds of changes. It is not necessary to specify
how the size of a change is estimated.

A simple alternative for all the requirements above could be to let a number of developers
that have not been working on the project and let then assess either each component of
maintainability or the total maintainability alone e.g., on a ten point scale. The requirement
could then be that none of the participants should give a lower score than 6 or that the
average score should be better than seven. This approach may replace both the detailed
spot checks and the real tests of maintainability and extendability.

Side 6 av 7

Appendix 1 – Traffic lights

The squares with rounded corners marked with dotted lines are the sensors. They consist of an
energized loop. The permeability of the loop will increase strongly when there is a large mass
of iron – e.g., a car – inside the loop. This increase is used by the sensor to give the signal “car
present in lane” to the control unit.

The following rules apply:

• The route lane A – lane B is prioritized. Thus, when no cars are present in any of the
sensor loops, the traffic lights for lane A and lane B are green and the lights in the
other directions are red.

• If the traffic lights for lane A and lane B are red and the lights in the other directions
are green, the traffic lights for lanes A and B will switch to green and the traffic lights
for lanes C and D will switch to red within maximum one minute if a car is detected in
lane A or B.

• The light cycle is the standardized cycle: green – amber – red – yellow – green
• You can only turn left or right if you have a green light. The rule used in e.g., the US

that you can turn right with care, even if the light is red does not apply here.
• If the system detects hardware or software errors, all lights shall shift to blinking

amber.

Side 7 av 7

Appendix 2 – Temporal patterns for requirements

	Faculty of Physics, Informatics and Mathematics
	NTNUNorwegian University of Science and Technology
	Department of Computer and Information Sciences
	 ENGLISH
	Sensurfrist: 2012-06-19
	Introduction
	Problem 1 – Requirements engineering (20 points)
	1a – Temporal patterns – 10 points
	1b – Textual use cases – 10 points

	Problem 2 – Testing methods (15 points)
	2a – Methods choice – 5 points
	2b – Testing methods – 10 points

	Problem 3 – Non-functional requirements (15 points)
	Appendix 1 – Traffic lights
	Appendix 2 – Temporal patterns for requirements

