
Side 1 av 9

Department of computer and information science

Examination paper for TDT4250
Advanced Software Design

Academic contact during examination: Hallvard Trætteberg
Phone: 91897263

Examination date: 16. December
Examination time (from-­to): 9:00-­13:00
Permitted examination support material: C
Specific, simple calculator is allowed.

Other information:
This examination paper is written by teacher Hallvard Trætteberg, with quality assurance by

John Krogstie.

Language: English
Number of pages: 3
Number of pages enclosed: 2

Checked by:

Date Signature

If you feel necessary information is missing, state the assumptions you find it necessary to make.

 Side 2 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

Part 1 – Model-based development (35%)

a) What is the difference between CIM and PIM type of models? Will ecore models be of type CIM

or PIM, or can’t it be decided in advance?

A CIM (Computation Independent Model) is used during analysis of the problem domain (problem
description and requirements) and does not consider issues specific for the design and
implementation of a system. A PIM is a design model where software issues are considered, but it is
still independent of the actual platform for realizing the software.

Ecore can be used for both CIM and PIM, but is more relevant for PIM, since it includes concepts
that design-oriented (e.g. data types) and excludes many constructs relevant for CIM, e.g. association
classes.

b) What is the relation between an instance, a model and a meta-model? Illustrate the model levels

M0 to M3 with examples.

Classes in an object-oriented model can be instantiated, e.g. from a Person class you can create
instances corresponding to specific persons like yourself. We say that a class is a meta-level above
the instance, M1 and M0, respectively. The model that defines the constructs used for defining
classes (and the other elements in the) in M1, is called a meta-model, since the it is at a meta-level
above, M2, in this case. Typical elements in a meta-model for object-oriented models are Class,
Association and Attribute. The meta-model is itself a model, so the constructs used for defining the
Class, Association and Attribute concepts are themselves modeled in the meta-meta-model, i.e. M3.
Sometimes M3 and M2 is actually the same language, e.g. Ecore is its own meta-model, and
sometimes they are different but similar, e.g. UML is modeled using MOF, which is a subset of
UML class models used for general meta-modeling.

c) Transformations can be classified in several ways. Explain the following categories:

- M2M – M2T
- Exogenous – endogenous
- In-place – out-place

M2M – model to model transformations, where the target of the transformation is another model, vs.
M2T – model to text transformation, where the target of the transformation is text (a string).

Exogenous, where the target language is different from the source, vs. endogenous, where the target
language is the same as the source.

In-place, where the target model is the same model, i.e. it is modified in-place, vs. out-place, where
the target model is created as a result of executing the transformation.

d) The EMF framework uses several kinds of transformations. Classify the following

transformations according to the categories from c):
- From ecore to genmodel, i.e. the step before you can generate Java code from an ecore

model.
- Fra genmodel to Java code, i.e. when you (re)generate Java code from genmodel.

Ecore to genmodel is M2M, since both are models, exogenous, since the are instances of different
modeling languages, and out-place, since the genmodel is created.

 Side 3 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

Genmodel to Java code is M2T, since Java code is text, exogenous, since they are (instances of)
different (modeling languages) and out-place, since the Java code is created. If you consider that the
Java code is merged with the existing code, meaning that the transformation is from genmodel and
Java code to Java code, the transformation becomes partly endogenous and in-place.

e) How do ATL-based M2M transformations work in general? Describe similarities and differences

between such transformations and graph transformations.

ATL is based on rules for mapping source objects to target objects, i.e. if you have a certain source
object of some type and satisfying certain conditions, you want to create a certain target object of
some type and with certain properties. Target objects are assumed linked to other target objects, and
the execution of the whole transformation takes care to construct the resulting graph in a proper
order, so that the target model is complete and connected.
A graph transformation is more general, in that it is a mapping from a source graph fragment pattern
to a target graph fragment. The source pattern is matched to source graph fragments, and the target
graph fragment is constructed from the binding between pattern and actual objects.

Part 2 – Component-based design (35%)

a) OSGi modules (bundles) define two types of dependencies (both are declared in

MANIFEST.MF), which ones? What are advantages and disadvantages with these to types?

(Depending means requirements for resolving a bundle.) A bundle can depend on other bundles
(with Require-Bundle), meaning that the other bundles must be present and resolved for this bundle
to be resolved. A bundle can depend on packages (with Import-Package), meaning that for each of
the package there must be a bundle present and resolved that exports the package.
Requiring bundles makes it easier to assemble (provision) the actual system, since you explicitly
have the bundle names (and versions), but you have less freedom in repackaging the software.
Requiring packages makes more it easier to repackage the software into different bundles without
affecting the resolving process, but makes provisioning more difficult, since you must know more
about the content of each bundle. In general, requiring packages is more robust, and with tool
support it needn’t be more difficult in practice.
Think of package as the interface of a part of the system, with the bundles as the implementation.
The advantages and disadvantages are similar to that of using interfaces vs. implementation types.

b) Describe the life-cycle of OSGi modules (bundles), with focus on the relation between states and

module dependencies.

 Side 4 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

The main states are installed, resolved and active. A bundle is first installed, and if its dependency
requirements are met and the corresponding bundles are resolved, it is itself resolved. A resolved
bundle may be started, and while that process is ongoing (classes are loaded and the activator is
running) the bundle is in the intermediate starting state. Once the starting process is completed the
bundle is active. The bundle may for various reasons be stopped, e.g. some dependent bundle is
stopped, and during that process it is stopping. It will then be resolved or end up being just installed,
if the requirements are no longer met. A bundle may of course also be explicitly uninstalled.

c) Explain the following figure, with focus on how a system of components is rigged:

In a component-based system, components don’t know about each other in advance, but are
assembled into a graph based on dependencies. The graph is dynamic, i.e. may vary over time. The
figure the components managing this process. A component, the Service Provider, tells a broker
(publish) that it is ready to receive requests, but sending a publish message. When another
component, the Service Requester, needs a particular service, it asks the Service Broker about
potential providers (inquire), and when one is found and selected, the Requester and Provider are
bound (bind) together, e.g. get direct references to each other. Later (and not indicated in the figure),
when a Provider may withdraw and will then be unbound from other components.

d) What is Dependency Injection (DI) and how is it used by OSGi Declarative Services, e.g. in the

exercise project? What advantages and disadvantages do you see for such use of DI?

DI is the automatic assembly of objects into a graph based on metadata or annotations about
dependencies. It relieves the programmer from writing this by hand, and in general DI systems make
it easier to support different configurations, e.g. for testing. Since the assembly process is less
transparent and deterministic, it may make the code more difficult to write and debug. OSGi
Declarative Services (DS) is a DI mechanism that loads the component dependency metadata from
XML files that are referenced in MANIFEST.MF. It’s also possible to use annotations in the Java
code. The metadata includes references to classes and methods that are used for instantiation and
binding (graph assembly). Components like the various ITaskProvider and ITaskServiceProvider
service implementations were bound to the framework components using OSGi DS.

e) REST APIs are often tightly coupled to an underlying data model. In what way? What is the

problem with this tight coupling, and how is this handled in the exercise project?

The REST URLs can be considered paths that navigate through and select runtime objects in a graph
based on (names in) the data model. The whole graph is exposed, and there is poor support for
encapsulation (different visibility for external request) or role-based views (different visibility based
on roles). In the exercise project, encapsulation was supported by wrapping the runtime objects in
services, that selectively exposed part of the runtime object graph. The services could remove,
expose, modify or add properties to the actual runtime objects.

 Side 5 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

Del 3 – DSL-design (30%)

With OSGi Declarative Services (DS) components are declared in separate XML files (that are
referenced from MANIFEST.MF). You find examples of such from the exercise project in the
Sample component definitions appendix. Such files are cumbersome to write and errors are easily
introduced and difficult to find, e.g. by misspelling class and method names in the reference element.
In addition, there is no validation of custom component properties declared with the property
element. E.g., a lot of groups made mistakes in the declaration of their app component (corresponding
to the GameApp component shown in the appendix), because the EngineAppComponent.eClass
property had a special format that wasn’t checked by Eclipse.

In this part you will make a DSL that is meant to 1) make it quicker to declare components and 2)
easier to avoid and fix mistakes like those mentioned above.

a) Make an object-oriented model that captures the information you wish to represent in these XML

files. In particular, consider what the model must include to achieve the goals 1) and 2) over for
the exercise project. And keep in mind that it must be possible to convert instances of the model
to the existing XML format (d). Include classes, data types, attributes and references (incl.
aggregations) with multiplicity, i.e. the same information you need to make a complete ecore
model as the basis for a DSL. You’re free to decide to use a diagram and/or text. In the appendix
Ecore data types and Ecore classes you’ll find ecore types you can use in your model.

The model must capture all the information that the XML format contains, and should have better
support for custom properties types (that are mapped to string when transforming to XML). This will
allow reaching goals 1) by supporting smarter editing and completion and 2) validation and
correction.

class Component {
 attr EString name;
 EJavaClass implementationClass;
 EJavaClass[*] services;
 ComponentReference[*] componentReferences;
 Property[*] properties;
}

class ComponentReference {
 attr EString name;
 EJavaClass service;
 Cardinality cardinality;
 attr MethodRef bind;
 attr MethodRef unbind;
}

datatype MethodRef wraps EString; // can check for valid syntax and existence

class Cardinality {
 attr EInt lowerBound default -1;
 attr EInt upperBound default -1;
}

 Side 6 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

abstract class Property {
 op EString getType(); // computes XML attribute value, implemented in all subclasses
 op EString asString(); // computes XML attribute value, implemented in all subclasses
 attr EString name;
}
class StringProperty {
 attr EString stringValue;
}

… other standard Property subclasses here…

class EClassProperty {
 ref EClass classRef;
}

b) Describe a syntax for a DSL for component declarations based on the model from a), and show

examples based on the appendix Sample component definitions. Explain how you’ll define the
syntax formally, whether you choose a textual syntax with Xtext or diagram-based syntax with
Sirius.

We choose to make a textual DSL. Here’s an example showing all elements:

component no.hal.pg.runtime.engine.util.PlayerReferenceHandler
 implemented-by no.hal.pg.runtime.engine.util.PlayerReferenceHandler
 providing

no.hal.pg.runtime.engine.IReferenceProvider,
no.hal.pg.runtime.engine.IReferenceResolver

 reference HttpService[1..1] to org.osgi.service.http.HttpService
with setHttpService (unsetHttpService)

 reference Engine[0..] to no.hal.pg.runtime.engine.IEngine
with addEngine (removeEngineApp)

 string IEngineApp.name = "GameApp"
 eClass EngineAppComponent.eClass = "platform:/plugin/no.hal.pg.runtime/model/pg-
runtime.ecore" # Game

Below is an Xtext grammar (not written or tested in Eclipse). Many details are beyond what is
expected, in particular the use of datatype rules (QName, MethodRef and EClassRef).

Component:
 name = QName ‘implemented-by’ implementationClass = QName
 (‘providing’ services += QName (‘,’ services += QName)*)?
 (componentReferences += Reference)*
 (properties += Property)*
 ;

QName = ID (‘.’ ID)+; // so-called datatype rule, for qualified names and EJavaClass attributes

Reference:
 ‘reference’ name = QName cardinality = Cardinality

‘to’ service = QName ‘with’ bind = MethodRef (‘(‘ unbind = MethodRef ‘)’)?
;

 Side 7 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

MethodRef: QName; // method references

Property: StringProperty | … | EClassProperty; // disjoint type rules
StringProperty: ‘string’ name = QName ‘=’ value = STRING;
EClassProperty: ‘eClass’ name = QName ‘=’ [EClass | EClassRef]; // reference EClass, typically in
separate file using special syntax
EClassRef: STRING ‘#’ ID; // syntax of EClass reference, must be handled by custom Xtext code

c) Describe how functions/tools related to (the editor for) the DSL can help you achieve goals 1)

and 2) above.

The syntax is less verbose than the corresponding XML, and with Xtext’s built-in completion both 1)
and 2) are improved. You can speed up the editing process (1) even more by providing custom
completion for EJavaClass attributes utilizing the project class path, and for EClass references (1) by
locating Ecore models. Validation will indicate unresolved references to Java classes and and
EClasses, and completion will help fix mistakes (2).

d) Explain how you’ll make a transformation from the DSL model to the XML format.

This is an M2T transformation where you should use a custom template language like Acceleo or a
generic language with support for string templates like Xtend. The transformation will typically have
a ‘generate’ method for each model class that adds strings to the output based on the corresponding
object’s contents. The ‘generate’ method for the containers will call ‘generate’ methods on the
contained objects. The Property class’ method getType and asString will be used for Property objects.
Utility methods will ensure the output is proper XML, e.g. for quoting/encoding attribute values.

 Side 8 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

Vedlegg/Appendix

Sample component definitions.

<scr:component name="no.hal.pg.runtime.engine.util.PlayerReferenceHandler">
 <implementation class="no.hal.pg.runtime.engine.util.PlayerReferenceHandler"/>
 <service>
 <provide interface="no.hal.pg.runtime.engine.IReferenceProvider"/>
 <provide interface="no.hal.pg.runtime.engine.IReferenceResolver"/>
 </service>
</scr:component>

<scr:component name="no.hal.pg.runtime.engine.http.EngineAppEndPointProvider">
 <implementation class="no.hal.pg.runtime.engine.http.EngineAppEndPointProvider"/>
 <reference bind="setHttpService" name="HttpService" cardinality="1..1"
 interface="org.osgi.service.http.HttpService" unbind="unsetHttpService"/>
 <reference bind="addEngine" cardinality="0..n"
 interface="no.hal.pg.runtime.engine.IEngine" name="Engine" unbind="removeEngine"/>
 <reference bind="addEngineApp" name="EngineApp" cardinality="0..n"
 interface="no.hal.pg.runtime.engine.http.IEngineApp" unbind="removeEngineApp"/>
</scr:component>

<scr:component name="no.hal.pg.runtime.engine.web.GameApp">
 <implementation class="no.hal.pg.runtime.engine.http.EngineAppComponent"/>
 <service>
 <provide interface="no.hal.pg.runtime.engine.http.IEngineApp"/>
 </service>
 <property name="IEngineApp.name" type="String" value="GameApp"/>
 <property name="EngineAppComponent.eClass" type="String"
 value="platform:/plugin/no.hal.pg.runtime/model/pg-runtime.ecore#Game"/>
 <property name="IEngineApp.displayName" type="String" value="Game app"/>
 <property name="EngineAppComponent.main" type="String"
 value="/web/GameApp.html"/property>
 <property name="EngineAppComponent.resourceNames" type="String"
 value="/web"></property>
 <property name="EngineAppComponent.aliasPathFormat" type="String" value="/web"/>
</scr:component>

Ecore data types

Name Java type Description
EInt int int values
EIntegerObject Integer Integer objects
EDouble double double values
EDoubleObject Double Double objects
EBoolean boolean boolean values
EBooleanObject Boolean Boolean objects
Estring String String objects
EJavaClass Class<?> Java Class objects

 Side 9 av 9
 Eksamen i TDT4250 – Avansert programvaredesign onsdag 16. desember 2015

Ecore classes

Name Description
EPackage An ecore package. Has a name and id (URI) and contains EClassifiers.
EClassifier Superclass of EClass and EDataType
EClass Ecore’s class concept, contains EStructuralFeatures
EDataType Wraps ordinary Java types, so they can be used in Ecore models
EStructuralFeature Superclass of EAttribute and EReference. Has a name, a type and multiplicity.
EAttribute A structural feature with an EDataType as the type.
EReference A structural feature with an EClass as the type.

