
Norwegian University of Science and Technology Department of Computer and Information Science

Page 1 of 10

TDT4255 COMPUTER DESIGN EXAM

Saturday 3. December Time: 09:00 – 12:00 ENGLISH

Allowed Aids:

D.

No written or handwritten examination support materials are permitted. A specified, simple calculator is permitted.

Use the provided space to answer the problems. If you need more space, an extra answer box is available on the last page of the test. The test accounts for 50% of the final grade, and the provided points show the maximal number of points that can be achieved on each assignment. Read the problem texts throughly. You can answer the questions in English or Norwegian.

Problem 1 Instruction sets (10 points)

a) (5 p) Translate the following C-code into MIPS instructions, making any necessary assumptions. The MIPS instruction reference can be found as an appendix.

if (a > b) a += 1; **else** a = 15;

Answer:

b) (5 p) Explain how nested procedure calls can be supported, and give two examples of how the computer designer can make procedure calls more efficient.

Answer:

```
# assume that $s0 contains a vaild memory address
1
2
  1w \ \$t1, \ 0(\$s0)
3
  ori $t2, $zero, 42
  bne $t1, $t2, notequal
4
5
    ori $s1, $zero, 1
6
    jmp end
7
  notequal:
8
    ori $s1, $zero, 0
9
  end:
```

Figure 1: MIPS Assembly Segment

Problem 2 Single Cycle Processor (10 points)

a) (5 p) Draw a block diagram of a single cycle processor that can execute the MIPS program in Figure 1.

Answer:

b) (5 p) Translate the instructions on line 2 and line 3 into control words for your processor.Answer:

Problem 3 Pipelining (10 points)

a) (5 p) Explain how *forwarding* can be used to avoid stalling on data hazards.Answer:

b) (5 p) Illustrate the execution of the code in Figure 1 on page 3 on a 5-stage pipeline given that the contents in the memory address in \$s0 is 42. Make any assumptions about the pipelined architecture that are necessary.

Answer:

Problem 4 Instruction Level Parallelism (10 points)

a) (5 p) Explain the difference between a *dependency* and a *hazard*.

Answer:

b) (5 p) Explain how a reorder buffer can be used to support speculative execution.

Answer:

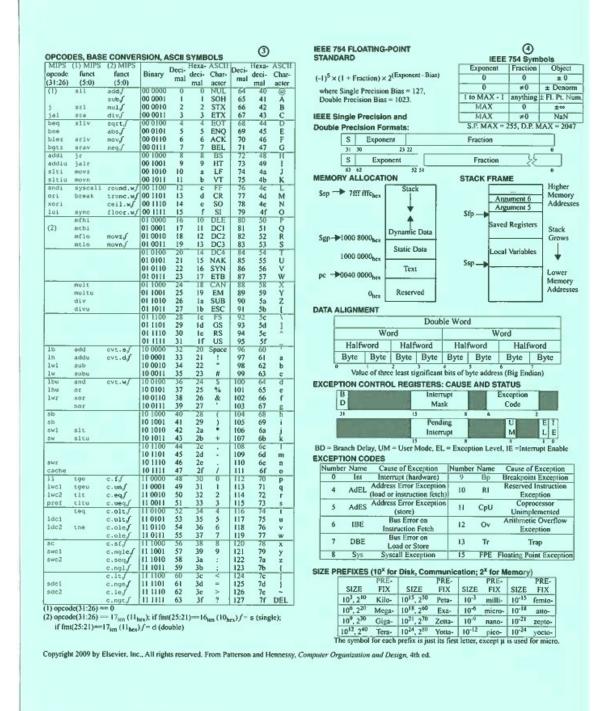
Problem 5 Memory Systems (10 points)

a) (5 p) Draw a block diagram of a 2-way set associative cache.

Answer:

b) (5 p) You have a 32b physical address, a 64B cache line, and an 8-way set associative cache. The cache size is 2MB. How many bits are needed for the block offset, the index, and the tag?

Answer:


Page 8 of 10

Additional Answer Space

Answer:

MIPS Reference

MIDC	-	© erence Data	E'3		FMT /F
ПГЭ	Refe	erence Data			FUNC (Hex)
				NAME, MNEMONIC MAT OPERATION Branch On FP True bolk FI if(FPcond)PC=PC+4+BranchAddr (4)	(Hex) 11/8/1/
FOR-			OPCODE / FUNCT		11/8/0/
NAME, MNEMO		AT OPERATION (in Verilog			0///1
Add		R R[rd] = R[rs] + R[rt]	(1) 0/20hes	Divide Unsigned divo R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0//-/1
			1-1 100	the second s	1/10/
Add Immediate			(1,2) 8hex	$FP Add \qquad add.d FR \{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} + $	1/11/
Add Imm. Unsigned		I R[rt] = R[rs] + SignExtImm	(2) 9 _{hex}	Double (F[A],F[A+1])	1/10/
Add Unsigned	addu	R R[rd] = R[rs] + R[rt]	0 / 21 _{hes}	PR Comment PRoved a ((PEG) PEG (1)) or	
And	and	R R[rd] = R[rs] & R[rt]	0 / 24 _{hex}	Double c.r.d* FR [FPCond - ({[[15],F[15+1]] op [F[ft],F[ft+1]])? 1:0	11/11/
And Immediate	andi	1 R[rt] = R[rs] & ZeroExtImm	(3) Chex	* (x is eq. 1t, or 1e) (op is ==, <, or <=) (y is 32, 3c, or 3e)	
Branch On Fauel		if(R[rs]==R[rt])			11/10/
Branch On Equal	peá	PC=PC+4+BranchAddr	(4) 4hes	FP Divide $div.d$ FR $\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} / F[fs+1]\}$	11/11/
Branch On Not Equal	bne	if(R[rs]!=R[rt])	Shex	Double {F(fi),F[fi+1]} FP Multiply Single mu1.a FR F[fd] = F[fs] * F[ft]	11/10/
branch on rot Equil		PC=PC+4+BranchAddr	(4)	ED Madelaha (EIGH EIGH II) = (EIGH EIGH II) *	
Jump	j	J PC=JumpAddr	(5) 2 _{hex}	Double nul.d FR (r[id],r[id+1]) - (r[is],r[is+1]) - (F[ft],F[ft+1])	11/11/
Jump And Link	jal	J R[31]=PC+8;PC=JumpAddr	(5) 3 _{hex}		11/10/
Jump Register	j≓	R PC=R[rs]	0 / 08 _{bex}	FP Subtract sub.d FR (F[fd],F[fd+1]) = (F[fs],F[fs+1]) -	11/11/
and Data Unsigned	1.0	R[rt]={24'b0,M[R[rs]	24.	Double (r[n],r[n+1])	
Load Byte Unsigned	100	+SignExtImm](7:0)}	(2) 24 _{hex}	Test supplied of the second state	31///
Load Halfword	1hu	R[n]=[16'b0,M[R[rs]	25hex	Load FP $f(r)=M[R[rs]+SignExtImm];$ (2) Double $f(rt+1)=M[R[rs]+SignExtImm+4]$	35///
Unsigned		+SignExtImm](15:0)}	(4)		0 //-/1
Load Linked	11	I R[rt] = M[R[rs]+SignExtImm]	(2,7) 30hex		0 ///1
Load Upper Imm.	lui	I R[rt] = {imm, 16'b0}	fbex		10 /0/
Load Word	14	I R[rt] = M[R[rs]+SignExtImm]	(2) 23 _{hex}	Multiply mult R (Hi,Lo) = R[rs] * R[rt]	0//-/
Nor	nor	R R[rd] = ~ (R[rs] R[rt])	0 / 27hex		0//-/1
Dr		R R[rd] = R[rs] R[rt]	0 / 25hes	Shift Right Arith. sra R R[rd] = R[rt] >>> shamt	0//
T22					39///
Or Immediate	ori	I R[rt] = R[rs] ZeroExtImm	(3) d _{bex}	Store FP sdc1 I M[R[rs]+SignExtImm] = F[rt]; (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d///
Set Less Than-	slt	R R[rd] = (R[rs] < R[rt])? 1:0	0 / 2a _{hex}		
Set Less Than Imm.	slti	I R[rt] = (R[rs] < SignExtImm)?	I:0(2) a _{hex}	FLOATING-POINT INSTRUCTION FORMATS	
Set Less Than Imm.	sltiù	R[rt] = (R[rs] < SignExtImm)	D D bhex	FR opcode fmt ft fs fd	funct
Unsigned		?1:0	(2,0)	34 26 25 21 20 16 15 11 10 0.5	
Set Less Than Unsig.		$R = R[rd] = (R[rs] \le R[rt])?1:0$	(6) 0/2b _{hex}	FI opcode fint ft immediate	
Shift Left Logical	\$11	R R[rd] = R[rt] << shamt	0 / 00 _{hex}	34 26 25 21 20 16 15	
Shift Right Logical	srl	R R[rd] = R[rt] >> shamt	0 / 02 _{hex}	PSEUDOINSTRUCTION SET	
Store Byte	sb	M[R[rs]+SignExtImm](7:0) =	(2) 28hex	NAME MNEMONIC OPERATION	
June Dyne		R[rt](7:0)	(2) ***hex	Branch Less Than blt if [R[rs] <r[rt]) pc="Lab<br">Branch Greater Than bgt if [R[rs]>R[rt]) PC = Lab</r[rt])>	
Store Conditional	sc	M[R[rs]+SignExtImm] = R[rt];	(2,7) 38hex	Branch Greater Than bgt if[R[rs]>R[rt]) PC = Lab Branch Less Than or Equal ble if[R[rs]<=R[rt]) PC = La	
		R[rt] = (atomic) ? 1 : 0 M[R[rs]+SignExtImm](15:0) =	(2,7)	Branch Greater Than or Equal bge if(R[rs]>=R[rt]) PC = La	
Store Halfword	atı.	R[rt](15:0)	(2) 29hex	Load Immediate 1 i R[rd] = immediate	
Store Word	aw	[M[R[rs]+SignExtImm] = R[rt]	(2) 2b _{bex}	Move nove R[rd] = R[rs]	
			(1) 0/22hes	REGISTER NAME, NUMBER, USE, CALL CONVENTION	
Subtract	sub	R R[rd] = R[rs] - R[rt]		NAME NUMBER USE PRESERVEDA	
Subtract Unsigned	subu	R R[rd] = R[rs] - R[rt]	0 / 23 _{hex}	ACALL	.?
		cause overflow exception ExtImm = { 16{immediate[15]}, im/	mediate 1	Szero 0 The Constant Value 0 N.A.	
		Extimm = { 16{1b'0}, immediate }	and and a	Sat I Assembler Temporary No	-
		chAddr = { 14{immediate[15]}, imm	nediate, 2'b0 }	\$v0-\$v1 2-3 Values for Function Results No and Expression Evaluation No	
	(5) Jump	pAddr = { PC+4[31:28], address, 2	'60 }	Sa0-Sa3 4-7 Arguments No	
		rands considered unsigned numbers (St0-St7 8-15 Temporaries No	
		nic test&set pair; R[rt] = 1 if pair ator	nic, 0 ii not atomic	Ss0-Ss7 16-23 Saved Temporaries Yes	_
BASIC INSTRUCT	ON FOR	IMATS		St8-St9 24-25 Temporaries No	_
R opcode	rs	rt rd shar		Sk0-Sk1 26-27 Reserved for OS Kernel No	
	6 25	21 20 16 15 11 10	65 0	Sgp 28 Global Pointer Yes	
I opcode	rs		ediate	Ssp 29 Stack Pointer Yes	
	16 25	21 20 16 15	0	Sfp 30 Frame Pointer Yes	
J opcode	1	address		Sra 31 Return Address Yes	
	86 25 Isevier, In	nc., All rights reserved. From Pattern	e on and Hennessy, Co	mputer Organization and Design, 4th ed.	
Copyright 2009 by D	over in the	and the region reserves. From Fatters	on and rectineary, et		

