
Page 1 of 17

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

EXAM IN COURSE TFE4171 DESIGN OF DIGITAL SYSTEMS II

Contact: Donn Morrison
Tel.: 455 48 895
Examination date: June 4, 2016
Examination time (from - to): 0900-1300

Permitted support material: C–Specified printed and hand-written support material is
allowed. A specific basic calculator is allowed.

Other information: Maximum number of points per task and sub-task are given in
the text.
Maximum number of points totally: 50.

The final grade is calculated by the sum of points from the
exercises that count 40% and the exam results which count 60%.

NB: This exam must be passed to pass in total. It is not sufficient
that the total grade is a pass grade (E or better), the grade on the
exam itself must also be E or better.

Language: English
Number of enumerated pages: 17
Additional pages in enclosures: 0

Controlled by:

Dato Sign

Intentionally left blank

2

Problem 1 Multiple choice (20 points)

Answer by circling the answer alternative you believe is the correct answer. You are awarded 2 points
for a correct answer and 0 points if you do not answer. If your answer is wrong or you circle more
than one alternative, you will get -1 point.

a) (2 p) Which of the following statements is NOT true about the SystemVerilog simulation en-
gine?

1. The Active region set handles events issued in the design code.

2. Concurrent assertions are evaluated in the Observed region.

3. The Reactive region set can schedule events to the Active region set.

4. Final assertions are executed in the Preponed region.

Answer: 1 2 3 4

assign sig1 = 1;
assign sig2 = 1;
always_comb a1: assert (sig1 == sig2);

b) (2 p) Consider the above SVA code snippet. Assuming sig1 and sig2 are initially zero,
which of the following is a possible result?

1. Depending on execution order, the assertion a1 may fail due to a simulation race.

2. The assertion a1 will vacuously pass.

3. The assertion a1 will never fail.

4. Depending on execution order, the assertion a1 may fail due to a glitch.

Answer: 1 2 3 4

c) (2 p) Which of the following is NOT true regarding deferred assertions?

1. Deferred assertions must only be used when code has delay controls.

2. Deferred assertions are insensitive to simulation glitches.

3. Deferred assertions may be placed inside and outside procedural code.

4. Deferred assertion action blocks must contain at most one statement.

Answer: 1 2 3 4

3

d) (2 p) Which of the following assertions best matches the specification “a and b must not be
active simultaneously”?

1. assert property (@posedge clk) !($rose(a) && $rose(b));

2. assert property (@posedge clk) !($stable(a) && $stable(b));

3. assert property (@posedge clk) a |-> !b

4. assert property (@posedge clk) !(a && b);

Answer: 1 2 3 4

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;
constraint align {addr[3:0] == 4’b0;}

endclass

typedef enum {low, mid, high} AddrType;

class MyBus extends Bus;
rand AddrType atype;
constraint addr_range
{

(atype == low) -> addr inside { [0 : 16383] };
(atype == mid) -> addr inside { [16384 : 32766] };
(atype == high) -> addr inside { [32767 : 65534] };

}
endclass

e) (2 p) Consider the above SystemVerilog code snippet. Upon instantiation of MyBus, which
one of the following values can addr never take when atype == mid?

1. 0x4000

2. 0x4096

3. 0x6000

4. 0x7F00

Answer: 1 2 3 4

4

f) (2 p) The principle problem with the traditional hardware design cycle that SystemC and TLM
address is:

1. Lack of formal equivalence checking between high- and RT-level models.

2. Late HW/SW partitioning can necessitate HW redesign.

3. Lack of early communication between hardware and software designers.

4. Slow cycle-accurate simulation.

Answer: 1 2 3 4

g) (2 p) Which of the following is NOT true regarding the execution of a SystemC application?

1. The initialisation phase includes a delta cycle.

2. The construction of the module hierarchy (e.g., modules created, ports bound to channels)
takes place in the elaboration phase.

3. Delta notifications can be created during the elaboration phase.

4. The evaluate-update loop begins with a call to sc_start().

Answer: 1 2 3 4

h) (2 p) The main objectives of timed TLM do NOT include which of the following?

1. Early software development on cycle-accurate models.

2. Benchmarking the performance of the micro-architecture based on timing annotations.

3. Fine-tuning the micro-architecture.

4. Optimising software for the micro-architecture to meet real-time constraints.

Answer: 1 2 3 4

5

i) (2 p) The difference between a SystemC method and thread is:

1. Only methods must be registered by the SystemC kernel.

2. A thread cannot have a return value.

3. A method can be invoked many times and cannot be suspended during execution.

4. A thread cannot have a sensitivity list, while a method can.

Answer: 1 2 3 4

j) (2 p) Which of the following statements relating to SystemC channels is true?

1. sc_event_queue is a primitive channel.

2. From a resource access perspective, sc_semaphore res(2); is equivalent to sc_mutex
res();.

3. sc_buffer is a hierarchical channel.

4. None of the above.

Answer: 1 2 3 4

6

Problem 2 SystemVerilog Assertions (10 points)

a) (2p) Explain how an FPGA can be used to check design assertions. What parts of the assertion
block are synthesisable? What is the benefit over software simulation?

Answer:

b) (2p) Consider the testbench below. Assume that the module router consumes request pack-
ets and issues acknowledgement packets in the next clock cycle upon receiving a request
packet. The program test tests the correctness of the received packets by generating 100
request packets with random IDs and random data. Complete the testbench with two asser-
tions:

a1 : Check that the received packet is an acknowledgement packet.

a2 : Check that the ID of the acknowledgement packet matches the ID of the request packet
sent in the previous cycle.

typedef enum logic {REQ = 1’b1, ACK = 1’b0} dirType;

typedef struct packed
{

dirType rq;
logic [6:0] id;
logic [23:0] data;

} packetType;

program test (input logic clk, packetType received,

7

output packetType sent);
logic [6:0] sent_id;
initial begin

repeat (100) begin
@(posedge clk);
sent_id = $random;
sent = ’{REQ, sent_id, $random};
@(posedge clk);

// Assertion a1 here:

// Assertion a2 here:

end
end
endprogram : test

module router (input packetType inpkt, logic clk,
output packetType outpkt);

// ... Details ommitted
endmodule : router

module top;
logic clk = 1’b0;
initial repeat (400) #5 clk = !clk;
packetType inpkt, outpkt;
test t(.clk(clk), .received(outpkt), .sent(inpkt));
router r(.*);

endmodule : top

8

c) (3p) Consider the simulation of the design below. Assume that the initialisation phase is com-
plete and the simulator is beginning to process the Active region at time t = 0.

1 module procReq(input logic req, gnt, clk);
2 logic allow;
3 wire proceed;
4 assign proceed = allow && gnt;
5 always @(posedge clk) allow <= req;
6 always @(posedge proceed) processData();
7 a1: assert property(@(posedge clk) req |=> proceed || !gnt);
8 endmodule : procReq
9

10 program test(output logic request, grant, sync);
11 logic oldreq = 1’b0;
12 assign grant = oldreq;
13 initial begin
14 request = 1’b0;
15 sync = 1’b0;
16 for (int i = 0; i < 100; i++) begin
17 #5 sync <= !sync;
18 if (i % 2) begin
19 oldreq <= request;
20 request <= $random;
21 end
22 end
23 end
24 endprogram : test
25

26 module top();
27 logic r, g, c;
28 procReq dut(r, g, c);
29 test tb(r, g, c);
30 endmodule : top

Recall that the region order is Preponed →Active →Inactive →Non-blocking assignment
(NBA) →Observed →Reactive →Re-reactive →Re-NBA →Postponed

What are the other necessary regions and their processing order at t = 0? How many times is
Line 4 executed in this time step and in which region(s)? Explain in brief.

Answer:

9

d) (3p) Complete the covergroup with two coverpoints - one for the counting modes and the
other for the memory address. For the second coverpoint, create two address bins - the first
counting accesses between addresses 0x00 and 0xFF and the second counting accesses to all
other memory locations.

enum {INC, DEC, NO_CHANGE} count_modes;
bit [31:0] address;

covergroup cg_ahb;
// Answer goes here:

endgroup

10

Problem 3 Formal Verification (10 points)

Part 1: For the following assume that Interval Property Checking (IPC) is used to prove an opera-
tional property p spanning over an interval of length n. Decide for each of the following statements
whether or not it is true. Give a short explanation.

a) (2p) The computational complexity of IPC generally increases with the length n of a property.

Answer:

b) (2p) IPC may consider less design states than are actually reachable. This can lead to a spurious
counter-example (false negative).

Answer:

c) (2p) To avoid spurious counter-examples (false negatives) it is possible to prove assertions by
induction and to use them as invariants for IPC.

Answer:

11

Part 2: The figure depicts the state diagram of a finite state machine M with state vector s = (s1, s2,
s3). The state diagram indicates in which states a property p is valid.

d) (2p) Consider the state set P = {000, 001, 100, 101, 110, 111}. Is P an invariant of this design?
Explain.

Answer:

12

e) (2p) Determine the reachable state set R and an invariant W, W 6= R, which is sufficient to
prove that the design fulfills p.

Answer:

13

Problem 4 SystemC (10 points)

class timer : public sc_module
{
public:
SC_HAS_PROCESS(timer);
timer (sc_module_name name) : sc_module (name) {

SC_THREAD (time_thread);
SC_THREAD (print_thread);

}
void time_thread ();
void print_thread ();
sc_event ev;

};

void timer::time_thread () {
sc_time tm (1,SC_NS);
while (true) {
for (int i = 1 ; i < 10; ++i) {
ev.notify (tm);
cout << "notify (" << tm + sc_time_stamp () << ")" << endl;
tm = tm * 2;

}
wait ();

}
}

void timer::print_thread () {
while (true) {
wait (ev);
cout << "event @ " << sc_time_stamp () << endl;

}
}

int sc_main (int argc , char *argv[]) {
timer t ("timer");
sc_start (1000, SC_NS);
return 0;

}

14

a) (3p) Timer version 1. Study the above model and write the expected output from simulation.
Explain the result.

Answer:

15

b) (4p) The time_thread process from above has been modified and now produces the fol-
lowing simulation output (no other part of the above code has been changed). Your task is to
recover this modification using only the simulation output. Write the full process body in the
space below, copying what you need from the version above.

SystemC 2.3.0-ASI --- Mar 10 2013 22:00:49
Copyright (c) 1996-2012 by all Contributors,
ALL RIGHTS RESERVED

notify (1 ns)
event @ 1 ns
notify (12 ns)
event @ 12 ns
notify (24 ns)
event @ 24 ns
notify (38 ns)
event @ 38 ns
notify (56 ns)
notify (82 ns)
event @ 56 ns
notify (124 ns)
notify (198 ns)
notify (336 ns)
event @ 124 ns

void timer::time_thread () {
// Your code here

} // time_thread

16

c) (3p) Explain the difference between static and dynamic processes. When is it desired to use
dynamic processes in a SystemC model? How is this achieved?

Answer:

17

