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TMA4110 2016H – solutions

Problem 1

a) The characteristic equation, λ2 + 1 = 0, has complex roots ±i = 0 ± 1i, so the general
equation of the differential equation is y(t) = e0t(C1 cos 1t+C2 sin 1t) = C1 cos t+C2 sin t.

b) To solve the differential equation, we need a particular solution. The general solution
is then the sum of the particular solution and the general solution of the homogeneous
equation above. We try the method of undetermined coefficients, and look for a particular
solution of the form

yp = A cos 2t+B sin 2t+ at2 + bt+ c.

Then

y′p = −2A sin 2t+ 2B cos 2t+ 2at+ b and y′′p = −4A cos 2t− 4B sin 2t+ 2a.

Substituting into the left-hand side of the equation, we get

(A cos 2t+B sin 2t+ at2 + bt+ c) + (−4A cos 2t− 4B sin 2t+ 2a)
= −3A cos 2t− 3B sin 2t+ at2 + bt+ 2a+ c.

This is equal to the right-hand side of the equation,

sin 2t+ t2 + 1,

if −3A = 0, −3B = 1, a = 1, b = 0 and 2a + c = 1, which is equivalent to
A = 0, B = −1

3 , a = 1, b = 0 and c = −1. Now we have a particular solution
yp = −1

3 sin 2t+ t2 − 1, and the general solution is

y(t) = C1 cos t+ C2 sin t− 1
3 sin 2t+ t2 − 1.
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Problem 2

a) To be a basis, B must span V and be linearly independent. By definition, V consists of all
linear combinations of 1, x and x2, so B spans V . To show that B is linearly independent,
assume c0 · 1 + c1x+ c2x

2 = 0 for all x (the right hand side is the zero polynomial, which
is the zero vector of V ). We must show that this is possible only when c0 = c1 = c2 = 0.
Inserting x = 0, 1, −1 in the equality, we get c0 = 0, c0 +c1 +c2 = 0 and c0−c1 +c2 = 0,
and it is easy to see that this implies c0 = c1 = c2 = 0, so that B is linearly independent,
and thus a basis of V . (We could have used three other distinct values of x to show linear
independence.)
T is a linear transformation if T (f(x)+g(x)) = T (f(x))+T (g(x)) for all f(x), g(x) in V
and T (cf(x)) = cT (f(x)) for all f(x) in V and c in R. We have

T (f(x) + g(x)) = (x+ 1) d
dx

(
f(x) + g(x)

)
+
(
f(x) + g(x)

)
= (x+ 1)

(
f ′(x) + g′(x)

)
+ f(x) + g(x)

=
(
(x+ 1)f ′(x) + f(x)

)
+
(
(x+ 1)g′(x) + g(x)

)
= T (f(x)) + T (g(x))

and

T (cf(x)) = (x+ 1) d
dx

(
cf(x)

)
+ cf(x)

= (x+ 1)cf ′(x) + cf(x)
= c

(
(x+ 1)f ′(x) + f(x)

)
= cT (f(x)),

showing that T is a linear transformation.
Let f(x) = a0 + a1x + a2x

2. Then T (f(x)) = (x + 1)(a1 + 2a2x) + a0 + a1x + a2x
2 =

(a0 + a1) · 1 + (2a1 + 2a2)x+ 3a2x
2, so that

[f(x)]B =

 a0 + a1
2a1 + 2a2

3a2

 .
On the other hand,

A[f(x)]B =

1 1 0
0 2 2
0 0 3


a0
a1
a2

 =

 a0 + a1
2a1 + 2a2

3a2

 ,
so [f(x)]B = A[f(x)]B.

b) The 3× 3 matrix A has 3 pivot columns, and is therefore invertible. The columns of an
invertible matrix are independent and thus a basis of the column space, so the dimension
of the column space is 3.
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Problem 3

a) We find the characteristic polynomial,

det(λI − A) =

∣∣∣∣∣∣∣∣
λ −1

2 −
1
8

−1
2 λ −7

8

−1
2 −

1
2 λ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
λ− 1 λ− 1 λ− 1
−1

2 λ −7
8

−1
2 −1

2 λ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
λ− 1 0 0
−1

2 λ+ 1
2 −3

8

−1
2 0 λ+ 1

2

∣∣∣∣∣∣∣∣
= (λ− 1)

∣∣∣∣∣λ+ 1
2 −3

8

0 λ+ 1
2

∣∣∣∣∣ = (λ− 1)(λ+ 1
2)2,

which has roots 1 and −1
2 , so the eigenvalues are 1 and −1

2 . In the second equality, the
second and the third row are added to the first (both operations leave the determinant
unchanged), and in the third equality the first column is subtracted from the second and
third. Then the determinant is expanded across the first row. Of course, the determinant
could have been expanded right away without doing any row or column operations first,
but now we got the advantage of avoiding any final factorisation.

The eigenspace of −1
2 is the solution set of (−1

2I − A)x = 0. If x =
[
x1 x2 x3

]T
, we

get

− 1
2x1 − 1

2x2 − 1
8x3 = 0

− 1
2x1 − 1

2x2 − 7
8x3 = 0

− 1
2x1 − 1

2x2 − 1
2x3 = 0,

x1 + x2 + 1
4x3 = 0

x1 + x2 + 7
4x3 = 0

x1 + x2 + x3 = 0,

x1 + x2 + 1
4x3 = 0
3
2x3 = 0
3
4x3 = 0,

x1 + x2 = 0
x3 = 0,

x1 = −x2

x3 = 0,

x1
x2
x3

 =

−tt
0

 = t

−1
1
0

 , t ∈ R.

We have applied elementary row operations to solve the linear system. We could of course
have worked with the coefficient matrix instead of working directly with the system. The
conclusion is that

{[
−1 1 0

]T}
is a basis of the eigenspace of −1

2 .

The eigenspace of 1 is the solution set of (I − A)x = 0. If x =
[
x1 x2 x3

]T
, we get

x1 − 1
2x2 − 1

8x3 = 0
− 1

2x1 + x2 − 7
8x3 = 0

− 1
2x1 − 1

2x2 + x3 = 0,

x1 − 1
2x2 − 1

8x3 = 0
3
4x2 − 15

16x3 = 0
− 3

4x2 + 15
16x3 = 0,

x1 − 1
2x2 − 1

8x3 = 0
x2 − 5

4x3 = 0,

x1 − 3
4x3 = 0

x2 − 5
4x3 = 0,

x1 = 3
4x3

x2 = 5
4x3,

x1
x2
x3

 =


3
4s
5
4s

s

 = 1
4s

3
5
4

 = t

3
5
4

 , s, t ∈ R.

So
{[

3 5 4
]T}

is a basis of the eigenspace of 1.
Since A is a 3 × 3 matrix and does not have three linearly independent eigenvectors, A
is not diagonalisable. (We have found two eigenvectors, which are linearly independent
since they correspond to different eigenvalues.)
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b) A is a stochastic matrix, since it is square with probablity vectors as columns, that is,
vectors with nonnegative entries that add up to 1. A steady-state vector is a probability
vector q such that Aq = q. This implies that q is an eigenvector corresponding to the
eigenvalue 1. From (a), we know that q = t

[
3 5 4

]T
for a t. To make q a probabil-

ity vector, we need t = 1/(3 + 5 + 4) = 1/12. The steady-state vector for A is thus
1
12

[
3 5 4

]T
=
[

1
4

5
12

1
3

]T
. (The steady-state vector was unique, which also follows

from the fact that A is regular – all entries of A2 are positive.)

Problem 4

First, eigenvectors corresponding to distinct eigenspaces are linearly independent. It is easy
to see that the two eigenvectors corresponding to −2 are linearly independent. So the three
provided eigenvectors of the 3×3 matrix A are linearly dependent. Then we know from theory
that

x(t) = c1

 1
2
−1

 e−t + c2

3
0
1

 e−2t + c3

 0
3
−5

 e−2t,

for c1, c2 and c3 in R, is the general solution of the linear system of differential equations.

We want 3
3
2

 = x(0) = c1

 1
2
−1

+ c2

3
0
1

+ c3

 0
3
−5

 .
We solve the linear system by applying elementary row operations to the augmented matrix
of the system: 1 3 0 3

2 0 3 3
−1 1 −5 2

 ∼
1 3 0 3
0 −6 3 −3
0 4 −5 5

 ∼
1 3 0 3
0 2 −1 1
0 4 −5 5

 ∼
1 3 0 3
0 2 −1 1
0 0 −3 3



∼

1 3 0 3
0 2 −1 1
0 0 1 −1

 ∼
1 3 0 3
0 2 0 0
0 0 1 −1

 ∼
1 3 0 3
0 1 0 0
0 0 1 −1

 ∼
1 0 0 3
0 1 0 0
0 0 1 −1


The solution of the system is (c1, c2, c3) = (3, 0,−1). So the solution

x(t) = 3

 1
2
−1

 e−t −
 0

3
−5

 e−2t

of the system of differential equations has the property x(0) =
[
3 3 2

]T
. Since limt→∞ e

−t = 0

and limt→∞ e
−2t = 0, limt→∞ x(t) =

[
0 0 0

]T
.
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Problem 5

a) 1− ei(n+1)θ

1− eiθ = (1− ei(n+1)θ)e−iθ/2

(1− eiθ)e−iθ/2 = e−iθ/2 − ei(n+1/2)θ

e−iθ/2 − eiθ/2

=
cos θ

2 − i sin
θ
2 − cos((n+ 1

2)θ)− i sin((n+ 1
2)θ)

−2i sin θ
2

=
i cos θ

2 + sin θ
2 − i cos((n+ 1

2)θ) + sin((n+ 1
2)θ)

2 sin θ
2

= 1
2

(
1 +

sin((n+ 1
2)θ)

sin θ
2

)
+ i

cos θ
2 − cos((n+ 1

2)θ)
2 sin θ

2

The real part is as stated in the problem.

b) First, (eiθ)k = eikθ = cos kθ + i sin kθ. Inserting z = eiθ in the provided formula for a
finite geometric series, we get 1+cos θ+ i sin θ+cos 2θ+ i sin 2θ+ · · ·+cosnθ+ i sinnθ =
(1 − ei(n+1)θ)/(1 − eiθ). Taking real parts of both sides of the equality (use (a) for the
right hand side), the result follows.

Problem 6

If A is symmetric, there is an orthogonal matrix P and a diagonal matrix D such that A =
PDPT. If A is in addition positive definite, all eigenvalues – the entries of the diagonal of D
– are positive. Let D1/2 denote a diagonal matrix that as entry ii has the square root of the
ii entry of D. Then D1/2D1/2 = D, and A = PDPT = PD1/2D1/2PT = P (D1/2)TD1/2PT =
(D1/2PT)T(D1/2PT) = BTB, where B = D1/2PT. B is invertible, since P and D1/2 are (the
latter has n pivot positions). (There even exists a positive definite symmetric matrix B such
that A = BTB: We could let B = PD1/2PT.)

Conversely, assume that A = BTB. Then AT = (BTB)T = BT(BT)T = BTB = A, so A is
symmetric. The quadratic form xTAx = xTBTBx = (Bx)T(Bx) = (Bx)·(Bx) is nonnegative,
and zero only if Bx = 0, by a property of the inner product (dot product). If B is invertible,
Bx = 0 implies x = 0, so A is indeed positive definite.


