

Department of Mathematical Sciences

Examination paper for TMA4110 Matematikk 3

Academic contact during examination: Antoine Julien^a, Markus Szymik^b Phone: ^a73597782, ^b41116793

Examination date: December 4th, 2014

Examination time (from-to): 09:00-13:00

Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR-270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling

Other information:

Give reasons for all answers, ensuring that it is clear how the answer has been reached. Each exercise has the same weight.

Language: English Number of pages: 3 Number pages enclosed: 0

Checked by:

Problem 1 In this exercise, we consider the complex numbers

$$z_1 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 and $z_2 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.

- a) Write z_1/z_2 in the form $z_1/z_2 = a + ib$ (do not use the cos or sin functions).
- **b)** Compute the modulus and an argument of z_1 and z_2 . Write z_1 and z_2 in polar form.
- c) Write z_1/z_2 in the form $z_1/z_2 = \rho e^{i\theta}$.
- d) Deduce from the above the values of $\cos(\pi/12)$ and $\sin(\pi/12)$.

Problem 2 In this exercise, we consider the differential equation

$$y'' - 4y' + 4y = g(x).$$

- a) Compute the general solution of the homogeneous equation.
- **b)** Compute a particular solution when $g(x) = e^{-2x}$ and when $g(x) = e^{2x}$.
- c) Compute the general solution of the equation when

$$g(x) = \frac{1}{4}(e^{-2x} + e^{2x}).$$

Problem 3 Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{bmatrix}.$$

- **a**) For which values of a is this matrix invertible?
- **b)** Compute A^{-1} , when this inverse exists.

Problem 4 In this exercise, we consider the matrix A given by

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

a) Find the eigenvalues of A?

b) Find a non-zero eigenvector for each eigenvalue of A.

- c) Find a basis of \mathbb{R}^3 made of eigenvectors of A.
- d) Find an *orthonormal* basis of \mathbb{R}^3 made of eigenvectors of A.
- e) Find an orthogonal matrix P and a diagonal matrix D such that $D = P^{\mathrm{T}}AP$.

Problem 5

a) Given the data pairs

$$a_1 = 1, \quad b_1 = 2,$$

 $a_2 = 2, \quad b_2 = 3,$
 $a_3 = 3, \quad b_3 = 5,$

express the system

$$a_1x_1 + x_2 = b_1 \\ a_2x_1 + x_2 = b_2 \\ a_3x_1 + x_2 = b_3$$

of linear equations in matrix form $A\mathbf{x} = \mathbf{b}$: What are A, \mathbf{x} and \mathbf{b} ?

- **b**) For A and **b** as in (b), show that $A\mathbf{x} = \mathbf{b}$ does not have a solution.
- c) Use the least squares method to find an approximate solution \mathbf{x} for the equation $A\mathbf{x} = \mathbf{b}$.
- d) For x as in (d), sketch the three data points and the line $b = x_1a + x_2$ into a coordinate system.
- e) For x as in (d), compute $4x_1 + x_2$?

Page 2 of 3

Problem 6

a) Solve the following system of linear equations:

$$x_1 + x_2 + x_3 = 2$$

$$x_1 + 2x_2 + 4x_3 = 3$$

$$x_1 + 3x_2 + 9x_3 = 5.$$

b) Let

$$p_{\mathbf{x}}(t) = x_1 + x_2 t + x_3 t^2$$

denote the polynomial with real coefficients $x_1, x_2, x_3 \in \mathbb{R}$. The transformation

$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \longmapsto \begin{bmatrix} p_{\mathbf{x}}(1) \\ p_{\mathbf{x}}(2) \\ p_{\mathbf{x}}(3) \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 + 2x_2 + 4x_3 \\ x_1 + 3x_2 + 9x_3 \end{bmatrix}$$

is linear. Find the matrix A that describes this linear transformation.

- c) For A as in (b), show that A is invertible.
- d) For A as in (b), find \mathbf{x} such that

$$A\mathbf{x} = \begin{bmatrix} 2\\3\\5 \end{bmatrix}.$$

e) For x as in (d), compute $p_x(4) = x_1 + 4x_2 + 16x_3$.

Problem 7 Let \mathbf{u} and \mathbf{v} be two nonzero, independent vectors in \mathbb{R}^3 . Let \mathbf{w} be a nonzero vector in \mathbb{R}^3 . Show that there exists a non-zero linear combination of \mathbf{u} and \mathbf{v} which is orthogonal to \mathbf{w} .