NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4110 Matematikk 3

Academic contact during examination: Antoine Julien ${ }^{\text {a }}$, Markus Szymik ${ }^{\text {b }}$
Phone: ${ }^{\text {a }} 73597782$, ${ }^{\text {b }} 41116793$

Examination date: December $4^{\text {th }}, 2014$
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR-270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling

Other information:

Give reasons for all answers, ensuring that it is clear how the answer has been reached. Each exercise has the same weight.

Language: English
Number of pages: 3
Number pages enclosed: 0

Problem 1 In this exercise, we consider the complex numbers

$$
z_{1}=\frac{1}{2}+i \frac{\sqrt{3}}{2} \quad \text { and } \quad z_{2}=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}
$$

a) Write z_{1} / z_{2} in the form $z_{1} / z_{2}=a+i b$ (do not use the \cos or \sin functions).
b) Compute the modulus and an argument of z_{1} and z_{2}. Write z_{1} and z_{2} in polar form.
c) Write z_{1} / z_{2} in the form $z_{1} / z_{2}=\rho e^{i \theta}$.
d) Deduce from the above the values of $\cos (\pi / 12)$ and $\sin (\pi / 12)$.

Problem 2 In this exercise, we consider the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=g(x) .
$$

a) Compute the general solution of the homogeneous equation.
b) Compute a particular solution when $g(x)=e^{-2 x}$ and when $g(x)=e^{2 x}$.
c) Compute the general solution of the equation when

$$
g(x)=\frac{1}{4}\left(e^{-2 x}+e^{2 x}\right) .
$$

Problem 3 Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 4 \\
1 & 3 & a
\end{array}\right]
$$

a) For which values of a is this matrix invertible?
b) Compute A^{-1}, when this inverse exists.

Problem 4 In this exercise, we consider the matrix A given by

$$
A=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] .
$$

a) Find the eigenvalues of A ?
b) Find a non-zero eigenvector for each eigenvalue of A.
c) Find a basis of \mathbb{R}^{3} made of eigenvectors of A.
d) Find an orthonormal basis of \mathbb{R}^{3} made of eigenvectors of A.
e) Find an orthogonal matrix P and a diagonal matrix D such that $D=P^{\mathrm{T}} A P$.

Problem 5

a) Given the data pairs

$$
\begin{array}{ll}
a_{1}=1, & b_{1}=2, \\
a_{2}=2, & b_{2}=3, \\
a_{3}=3, & b_{3}=5,
\end{array}
$$

express the system

$$
\begin{aligned}
& a_{1} x_{1}+x_{2}=b_{1} \\
& a_{2} x_{1}+x_{2}=b_{2} \\
& a_{3} x_{1}+x_{2}=b_{3}
\end{aligned}
$$

of linear equations in matrix form $A \mathbf{x}=\mathbf{b}$: What are A, \mathbf{x} and \mathbf{b} ?
b) For A and \mathbf{b} as in (b), show that $A \mathbf{x}=\mathbf{b}$ does not have a solution.
c) Use the least squares method to find an approximate solution \mathbf{x} for the equation $A \mathbf{x}=\mathbf{b}$.
d) For \mathbf{x} as in (d), sketch the three data points and the line $b=x_{1} a+x_{2}$ into a coordinate system.
e) For \mathbf{x} as in (d), compute $4 x_{1}+x_{2}$?

Problem 6

a) Solve the following system of linear equations:

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=2 \\
x_{1}+2 x_{2}+4 x_{3}=3 \\
x_{1}+3 x_{2}+9 x_{3}=5 .
\end{array}
$$

b) Let

$$
p_{\mathbf{x}}(t)=x_{1}+x_{2} t+x_{3} t^{2}
$$

denote the polynomial with real coefficients $x_{1}, x_{2}, x_{3} \in \mathbb{R}$. The transformation

$$
\begin{gathered}
\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \longmapsto\left[\begin{array}{l}
p_{\mathbf{x}}(1) \\
p_{\mathbf{x}}(2) \\
p_{\mathbf{x}}(3)
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2}+x_{3} \\
x_{1}+2 x_{2}+4 x_{3} \\
x_{1}+3 x_{2}+9 x_{3}
\end{array}\right]
\end{gathered}
$$

is linear. Find the matrix A that describes this linear transformation.
c) For A as in (b), show that A is invertible.
d) For A as in (b), find \mathbf{x} such that

$$
A \mathbf{x}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]
$$

e) For \mathbf{x} as in (d), compute $p_{\mathbf{x}}(4)=x_{1}+4 x_{2}+16 x_{3}$.

Problem 7 Let \mathbf{u} and \mathbf{v} be two nonzero, independent vectors in \mathbb{R}^{3}. Let \mathbf{w} be a nonzero vector in \mathbb{R}^{3}. Show that there exists a non-zero linear combination of \mathbf{u} and \mathbf{v} which is orthogonal to \mathbf{w}.

