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Exam in TMA4110 Calculus 3, December 2012

Solutions

Problem 1 Show that z1 = 1 +
√
3i is a zero of the polynomial P (z) = z5 − 2z4 + 4z3 −

8z2 + 16z − 32 and find the 4 other zeros of P .

Solution. The best strategy here is to recall that z0 is a zero of a polynomial Q(z) with real
coefficients if and only if z0 is a zero of Q(z). Hence, since P (z) has real coefficients, we know
that z1 is a zero if and only if z2 = z1 = 1 −

√
3i is a zero. Showing that z1 is a zero is then

the same as showing that both z1 and z2 are zeros. This happens if and only if

(z − z1)(z − z2) = z2 − 2z + 4

is a factor of P (z). Performing the division P (z) : (z2− 2z+4), we get that P (z) = (z2− 2z+
4)(z3 − 8), so z1 and z2 are zeros.

The remaining zeros are the three complex numbers satisfying z3 = 8. We use polar form for
the calculations. We have that 8 = 8(cos 0 + i sin 0). Let z = r(cos θ + i sin θ). Then we know
that r = 3

√
8 = 2, and that

θ =
0 + 2kπ

3
for k ∈ {0, 1, 2},

so the three arguments are θ = 0, θ = 2π
3

and θ = 4π
3
. This gives the three solutions

z3 = 2(cos 0 + i sin 0) = 2

z4 = 2

(
cos

2π

3
+ i sin

2π

3

)
= −1 +

√
3i

z5 = 2

(
cos

4π

3
+ i sin

4π

3

)
= −1−

√
3i
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Note 1: Instead of computing z5, you can use the fact that z5 = z4.

Note 2: If you missed the conjugation trick in the first part, it is also possible to evaluate
P (z1). Then you will have to compute z21 , z31 and so on. Fortunately, z31 = −8, so the
computations won’t be too hard. It is also possible (but not preferable) to perform the division
P (z) : (z − z1). In both of these cases, finding the other 4 roots is difficult.

Problem 2 Find the general solution to the differential equation y′′ + 2y′ + 5y = 2 cos t+
4 sin t.

Solution. The general solution is of the form y = yh + yp, where yh is the general solution of
the homogeneous equation y′′+2y′+5y = 0, and yp is some particular solution of the original
equation. For yh, we consider the characteristic polynomial λ2 + 2λ + 5 = 0. We get two
complex roots: λ = −1± 2i. Thus, yh = c1e

−t cos 2t+ c2e
−t sin 2t.

As for the particular solution yp, we have several methods which can be applied. Here, we
guess that the solution is of the form y(t) = A cos t+ B sin t for some real numbers A and B.
Then

y′ = −A sin t+B cos t

y′′ = −A cos t−B sin t

Inserted into the equation, we get

(−A cos t−B sin t) + 2(−A sin t+B cos t) + 5(A cos t+B sin t) = 2 cos t+ 4 sin t

(4A+ 2B) cos t+ (4B − 2A) sin t = 2 cos t+ 4 sin t

So the equations we need to solve is 4A+2B = 2 and 4B−2A = 4. The solution isA = 0, B = 1.
Hence, the particular solution is yp = sin t. The general solution is

y(t) = c1e
−t cos 2t+ c2e

−t sin 2t+ sin t

Problem 3 Find the general solution to the system

3x1 − 6x2+6x3 = −15
x1 + x2 +4x3 = 10.

Solution. We reduce the augmented matrix of the system:[
3 −6 6 −15
1 1 4 10

]
∼
[
0 −9 −6 −45
1 1 4 10

]
∼
[
1 1 4 10
0 1 2/3 5

]
∼
[
1 0 10/3 5
0 1 2/3 5

]
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x3 is free, so we put x3 = s. Then x1 = 5− 10
3
s and x2 = 5− 2

3
s, and the general solution is

x =

5− 10/3s
5− 2/3s

s

 =

55
0

+ s

−10/3−2/3
1


Problem 4 Let T : R3 → R3 be an invertible linear transformation such that T (x1, x2, x3) =
(x2 + 2x3, x1 + 3x3, 4x1 − 3x2 + 8x3). Find a formula for T−1.

Solution. First, we find the standard matrix A of T . This is
[
T (e1) T (e2) T (e3)

]
, where

{e1, e2, e3} is the standard basis of R3. It is easy to see/compute that

A =

0 1 2
1 0 3
4 −3 8

 .
To find a formula for T−1, we find A−1. This is done by reducing0 1 2 1 0 0

1 0 3 0 1 0
4 −3 8 0 0 1


to 1 0 0 −9/2 7 −3/2

0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

 .
So

T (x1, x2, x3) = A−1

x1x2
x3

 =

−9/2 7 −3/2
−2 4 −1
3/2 −2 1/2

x1x2
x3

 =

−(9/2)x1 + 7x2 − (3/2)x3
−2x1 + 4x2 − x3

(3/2)x1 − 2x2 + (1/2)x3

 ,
and the formula for T−1 is T−1(x1, x2, x3) = (−9

2
x1+7x2− 3

2
x3,−2x1+4x2−x3, 32x1−2x2+

1
2
x3).

Problem 5 Let A =

[
1 1 2
2 2 4

]
. Find orthonormal bases for Col(A), Row(A), and Nul(A).

Solution. First, we reduce A to reduced echelon form:

A =

[
1 1 2
2 2 4

]
∼
[
1 1 2
0 0 0

]
= A′
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Now, A′ give us all the information we need about bases (not necessarily orthonormal) for
Col(A), Row(A) and Nul(A):

A basis for Nul(A) is found by solving A′x = 0. We get that x2 and x3 are free, so we put
x2 = s and x3 = t. Then x1 = −2t−s, and the general solution is x =

[
−1
1
0

]
s+
[
−2
0
1

]
t. Hence,

a basis for the null space is {v1 =
[
−1
1
0

]
,v2 =

[
−2
0
1

]
}. It is neither orthogonal nor orthonormal.

We orthogonalize it by using the Gram-Schmidt algorithm:

First, we put u1 = v1. Then, we compute

u2 = v2 −
v2u1

u1u1

u1 =

−20
1

− 2

2

−11
0

 =

−1−1
1


Finally, to get the basis orthonormal, we normalize each vector – that is, we divide each entry
by the norm of the vector.

u′1 =
1

‖u1‖
u1 =

1√
2

−11
0

 =

−1/√21/
√
2

0



u′2 =
1

‖u2‖
u2 =

1√
3

−1−1
1

 =

−1/√3−1/
√
3

1/
√
3


So {u′1,u′2} is an orthonormal basis for Nul(A).

A basis for Row(A) can be read directly from A′, picking the rows with a pivot. In this case,
there is only one such row, so the basis is {u3 =

[
1 1 2

]
}. Since the basis consists of only

one vector, it is orthogonal, but we need to normalize it:

u′3 =
1

‖u3‖
u1 =

[
1/
√
6 1/

√
6 2/

√
6
]

So {u′3} is a basis for Row(A).

For the column space, we pick the columns of A with a corresponding pivot in A′. Hence a
basis for Col(A) is {u4 = [ 12 ]}. Again, this is an orthogonal set, but we need to normalize.
The norm of u4 is

√
5, so an orthonormal basis for Col(A) is {u′4 =

[
1/
√
5

2/
√
5

]
}.

Problem 6 Let P =

[
0.8 0.3
0.2 0.7

]
. Let x0,x1,x2, . . . be the Markov chain defined by x0 =[

0.4
0.6

]
and xi+1 = Pxi for i = 0, 1, 2, . . . .
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Find the steady-state vector for P and an explicit formula for xi.

Solution. The steady-state vector q is a vector satisfying Pq = q, and with entries adding up
to 1 (note that this makes sense only if 1 is an eigenvalue of P , and then q is a corresponding
eigenvector). Since we are going to need all eigenvalues later (to find the explicit formula for
xi), we consider the characterisic equation of P .

det(P − Iλ) = det

[
0.8− λ 0.3
0.2 0.7− λ

]
= λ2 − 1.5λ+ 0.5 = (λ− 1)(λ− 0.5)

Let λ1 = 1 and λ2 = 0.5. We solve (P − Iλ1)x = 0 to find a basis for the eigenspace
corresponding to λ1. We get [

−0.2 0.3
0.2 −0.3

]
∼
[
1 −3/2
0 0

]
So {x =

[
3/2
1

]
} is a basis for the eigenspace. We let q = 1

5/2
x =

[
3/5
2/5

]
. This is the steady-state

vector.

To find the explicit formula for xi, we need one eigenvector corresponding to each eigenvalue.
For λ1, we pick u1 = [ 32 ] (multiply q by 5 to get rid of the fractions). For λ2, we find that
u2 = [ −11 ] is an eigenvector (by solving (P − Iλ2)x = 0).

The next ting we do, is to find real numbers A and B such that x0 = Au1 + Bu2 (note that
such numbers must exist; since u1 and u2 are linearly independent, they form a basis for R2).
The augmented matrix of this equation is[

3 −1 0.4
2 1 0.6

]
.

When solving this system, we get A = B = 1
5
.

Now, x1 = Px0 = P (1
5
u1 +

1
5
u2) =

1
5
Pu1 +

1
5
Pu2 = 1

5
λ1u1 +

1
5
λ2u2 (recall that Pui = λiui).

Similarly, x2 = Px1 = P (Px0) = P (1
5
λ1u1 +

1
5
λ2u2) =

1
5
λ1Pu1 +

1
5
λ2Pu2 = 1

5
λ21u1 +

1
5
λ22u2.

Continuing this way, we get the formula

xi =
1

5
λi1u1 +

1

5
λi2u2 =

1

5
1i
[
3
2

]
+

1

5
0.5i

[
−1
1

]
for xi.
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Problem 7 Find the solution of the system

x′1 = x1 + 3x2 + 3x3

x′2 = −3x1 − 5x2 − 3x3

x′3 = 3x1 + 3x2 + x3

that satisfies x1(0) = 1, x2(0) = −1 and x3(0) = 2.

Solution. The system can be written in matrix form like x′ = Ax, where

A =

 1 3 3
−3 −5 −3
3 3 1

 .
We want to find a matrix P which diagonalizes A. We study the characteristic equation:

det(A− Iλ) = det

1− λ 3 3
−3 −5− λ −3
3 3 1− λ

 = −(λ− 1)(λ+ 2)2

We find bases for the eigenspaces corresponding to λ1 = 1 and λ2 = −2: For λ1, we get that
the eigenspace is spanned by

[
1
−1
1

]
; and for λ2, we get that the eigenspace is spanned by

[
−1
0
1

]
and

[
−1
1
0

]
. Hence, P is

P =

 1 −1 −1
−1 0 1
1 1 0


We know that P−1AP = D, where D is a diagonal matrix with the eigenvalues on the diagonal.
Now we can return to our system of differential equations. We will use the substitution x = Py.
Then we get

Py′ = APy

y′ = P−1APy = Dy =

1 0 0
0 −2 0
0 0 −2

y

y =

 c1e
t

c2e
−2t

c3e
−2t


This gives that

x = Py =

 1 −1 −1
−1 0 1
1 1 0

 c1e
t

c2e
−2t

c3e
−2t

 =

c1et − c2e−2t − c3e−2t−c1et + c3e
−2t

c1e
t + c2e

−2t


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We have that x1(0) = 1, x2(0) = −1 and x3(0) = 2. This gives the equations

c1 − c2 − c3 = 1

−c1 + c3 = −1
c1 + c2 = 2

Using Gauss-Jordan elimination, we get that c1 = 2, c2 = 0 and c3 = 1. Thus,

x1(t) = 2et − e−2t

x2(t) = −2et + e−2t

x3(t) = 2et

is the solution satisfying the given initial conditions.

Problem 8 Find the equation y = β0+β1x of the least-squares line that best fits the data
points (1,3), (2,5), (4,7) and (5,9).

Solution. We will solve the problem by solving the normal equations, but to find the normal
equations, we need to express the problem in terms of a matrix equation. First, we form the
design matrix

X =


1 1
1 2
1 4
1 5


and the observation vector

y =


3
5
7
9


Now, we can express the problem as: Find the least-squares solution of Xβ = y. The normal
equations are XTXβ = XTy. We compute

XTX =

[
4 12
12 46

]
and

XTy =

[
24
86

]
so the system we need to solve is [

4 12
12 46

] [
β0
β1

]
=

[
24
86

]
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The solution is
β0 =

18

10
and β1 =

14

10

so the best-fitting line is y = 18
10

+ 14
10
x.


