Exam in TMA4110 Calculus 3, December 2012

Solutions

Problem 1 Show that $z_{1}=1+\sqrt{3} i$ is a zero of the polynomial $P(z)=z^{5}-2 z^{4}+4 z^{3}-$ $8 z^{2}+16 z-32$ and find the 4 other zeros of P.

Solution. The best strategy here is to recall that z_{0} is a zero of a polynomial $Q(z)$ with real coefficients if and only if $\overline{z_{0}}$ is a zero of $Q(z)$. Hence, since $P(z)$ has real coefficients, we know that z_{1} is a zero if and only if $z_{2}=\overline{z_{1}}=1-\sqrt{3} i$ is a zero. Showing that z_{1} is a zero is then the same as showing that both z_{1} and z_{2} are zeros. This happens if and only if

$$
\left(z-z_{1}\right)\left(z-z_{2}\right)=z^{2}-2 z+4
$$

is a factor of $P(z)$. Performing the division $P(z):\left(z^{2}-2 z+4\right)$, we get that $P(z)=\left(z^{2}-2 z+\right.$ 4) $\left(z^{3}-8\right)$, so z_{1} and z_{2} are zeros.

The remaining zeros are the three complex numbers satisfying $z^{3}=8$. We use polar form for the calculations. We have that $8=8(\cos 0+i \sin 0)$. Let $z=r(\cos \theta+i \sin \theta)$. Then we know that $r=\sqrt[3]{8}=2$, and that

$$
\theta=\frac{0+2 k \pi}{3} \quad \text { for } k \in\{0,1,2\}
$$

so the three arguments are $\theta=0, \theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$. This gives the three solutions

$$
\begin{aligned}
& z_{3}=2(\cos 0+i \sin 0)=2 \\
& z_{4}=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)=-1+\sqrt{3} i \\
& z_{5}=2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)=-1-\sqrt{3} i
\end{aligned}
$$

Note 1: Instead of computing z_{5}, you can use the fact that $z_{5}=\overline{z_{4}}$.
Note 2: If you missed the conjugation trick in the first part, it is also possible to evaluate $P\left(z_{1}\right)$. Then you will have to compute z_{1}^{2}, z_{1}^{3} and so on. Fortunately, $z_{1}^{3}=-8$, so the computations won't be too hard. It is also possible (but not preferable) to perform the division $P(z):\left(z-z_{1}\right)$. In both of these cases, finding the other 4 roots is difficult.

Problem 2 Find the general solution to the differential equation $y^{\prime \prime}+2 y^{\prime}+5 y=2 \cos t+$ $4 \sin t$.

Solution. The general solution is of the form $y=y_{h}+y_{p}$, where y_{h} is the general solution of the homogeneous equation $y^{\prime \prime}+2 y^{\prime}+5 y=0$, and y_{p} is some particular solution of the original equation. For y_{h}, we consider the characteristic polynomial $\lambda^{2}+2 \lambda+5=0$. We get two complex roots: $\lambda=-1 \pm 2 i$. Thus, $y_{h}=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$.

As for the particular solution y_{p}, we have several methods which can be applied. Here, we guess that the solution is of the form $y(t)=A \cos t+B \sin t$ for some real numbers A and B. Then

$$
\begin{aligned}
y^{\prime} & =-A \sin t+B \cos t \\
y^{\prime \prime} & =-A \cos t-B \sin t
\end{aligned}
$$

Inserted into the equation, we get

$$
\begin{aligned}
(-A \cos t-B \sin t)+2(-A \sin t+B \cos t)+5(A \cos t+B \sin t) & =2 \cos t+4 \sin t \\
(4 A+2 B) \cos t+(4 B-2 A) \sin t & =2 \cos t+4 \sin t
\end{aligned}
$$

So the equations we need to solve is $4 A+2 B=2$ and $4 B-2 A=4$. The solution is $A=0, B=1$. Hence, the particular solution is $y_{p}=\sin t$. The general solution is

$$
y(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+\sin t
$$

Problem 3 Find the general solution to the system

$$
\begin{aligned}
3 x_{1}-6 x_{2}+6 x_{3} & =-15 \\
x_{1}+x_{2}+4 x_{3} & =10 .
\end{aligned}
$$

Solution. We reduce the augmented matrix of the system:

$$
\left[\begin{array}{cccc}
3 & -6 & 6 & -15 \\
1 & 1 & 4 & 10
\end{array}\right] \sim\left[\begin{array}{cccc}
0 & -9 & -6 & -45 \\
1 & 1 & 4 & 10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 4 & 10 \\
0 & 1 & 2 / 3 & 5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 10 / 3 & 5 \\
0 & 1 & 2 / 3 & 5
\end{array}\right]
$$

x_{3} is free, so we put $x_{3}=s$. Then $x_{1}=5-\frac{10}{3} s$ and $x_{2}=5-\frac{2}{3} s$, and the general solution is

$$
x=\left[\begin{array}{c}
5-10 / 3 s \\
5-2 / 3 s \\
s
\end{array}\right]=\left[\begin{array}{l}
5 \\
5 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-10 / 3 \\
-2 / 3 \\
1
\end{array}\right]
$$

Problem 4 Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an invertible linear transformation such that $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{2}+2 x_{3}, x_{1}+3 x_{3}, 4 x_{1}-3 x_{2}+8 x_{3}\right)$. Find a formula for T^{-1}.

Solution. First, we find the standard matrix A of T. This is $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{3}\right)\right]$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. It is easy to see/compute that

$$
A=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]
$$

To find a formula for T^{-1}, we find A^{-1}. This is done by reducing

$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right]
$$

to

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right] .
$$

So

$$
T\left(x_{1}, x_{2}, x_{3}\right)=A^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-(9 / 2) x_{1}+7 x_{2}-(3 / 2) x_{3} \\
-2 x_{1}+4 x_{2}-x_{3} \\
(3 / 2) x_{1}-2 x_{2}+(1 / 2) x_{3}
\end{array}\right],
$$

and the formula for T^{-1} is $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(-\frac{9}{2} x_{1}+7 x_{2}-\frac{3}{2} x_{3},-2 x_{1}+4 x_{2}-x_{3}, \frac{3}{2} x_{1}-2 x_{2}+\frac{1}{2} x_{3}\right)$.
Problem 5 Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 4\end{array}\right]$. Find orthonormal bases for $\operatorname{Col}(A)$, $\operatorname{Row}(A)$, and $\operatorname{Nul}(A)$.

Solution. First, we reduce A to reduced echelon form:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]=A^{\prime}
$$

Now, A^{\prime} give us all the information we need about bases (not necessarily orthonormal) for $\operatorname{Col}(A), \operatorname{Row}(A)$ and $\operatorname{Nul}(A):$

A basis for $\operatorname{Nul}(A)$ is found by solving $A^{\prime} \mathbf{x}=\mathbf{0}$. We get that x_{2} and x_{3} are free, so we put $x_{2}=s$ and $x_{3}=t$. Then $x_{1}=-2 t-s$, and the general solution is $\mathbf{x}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] s+\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] t$. Hence, a basis for the null space is $\left\{\mathbf{v}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right\}$. It is neither orthogonal nor orthonormal. We orthogonalize it by using the Gram-Schmidt algorithm:

First, we put $\mathbf{u}_{1}=\mathbf{v}_{1}$. Then, we compute

$$
\mathbf{u}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \mathbf{u}_{1}}{\mathbf{u}_{1} \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

Finally, to get the basis orthonormal, we normalize each vector - that is, we divide each entry by the norm of the vector.

$$
\begin{aligned}
& \mathbf{u}_{1}^{\prime}=\frac{1}{\left\|\mathbf{u}_{1}\right\|} \mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
& \mathbf{u}_{2}^{\prime}=\frac{1}{\left\|\mathbf{u}_{2}\right\|} \mathbf{u}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / \sqrt{3} \\
-1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]
\end{aligned}
$$

So $\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\}$ is an orthonormal basis for $\operatorname{Nul}(A)$.
A basis for $\operatorname{Row}(A)$ can be read directly from A^{\prime}, picking the rows with a pivot. In this case, there is only one such row, so the basis is $\left\{\mathbf{u}_{3}=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]\right\}$. Since the basis consists of only one vector, it is orthogonal, but we need to normalize it:

$$
\mathbf{u}_{3}^{\prime}=\frac{1}{\left\|\mathbf{u}_{3}\right\|} \mathbf{u}_{1}=\left[\begin{array}{lll}
1 / \sqrt{6} & 1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right]
$$

So $\left\{\mathbf{u}_{3}^{\prime}\right\}$ is a basis for $\operatorname{Row}(A)$.
For the column space, we pick the columns of A with a corresponding pivot in A^{\prime}. Hence a basis for $\operatorname{Col}(A)$ is $\left\{\mathbf{u}_{4}=\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$. Again, this is an orthogonal set, but we need to normalize. The norm of \mathbf{u}_{4} is $\sqrt{5}$, so an orthonormal basis for $\operatorname{Col}(A)$ is $\left\{\mathbf{u}_{4}^{\prime}=\left[\begin{array}{l}1 / \sqrt{5} \\ 2 / \sqrt{5}\end{array}\right]\right\}$.

Problem 6 Let $P=\left[\begin{array}{ll}0.8 & 0.3 \\ 0.2 & 0.7\end{array}\right]$. Let $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ be the Markov chain defined by $\mathbf{x}_{0}=$ $\left[\begin{array}{c}0.4 \\ 0.6\end{array}\right]$ and $\mathbf{x}_{i+1}=P \mathbf{x}_{i}$ for $i=0,1,2, \ldots$.

Find the steady-state vector for P and an explicit formula for \mathbf{x}_{i}.

Solution. The steady-state vector \mathbf{q} is a vector satisfying $P \mathbf{q}=\mathbf{q}$, and with entries adding up to 1 (note that this makes sense only if 1 is an eigenvalue of P, and then \mathbf{q} is a corresponding eigenvector). Since we are going to need all eigenvalues later (to find the explicit formula for \mathbf{x}_{i}), we consider the characterisic equation of P.

$$
\operatorname{det}(P-I \lambda)=\operatorname{det}\left[\begin{array}{cc}
0.8-\lambda & 0.3 \\
0.2 & 0.7-\lambda
\end{array}\right]=\lambda^{2}-1.5 \lambda+0.5=(\lambda-1)(\lambda-0.5)
$$

Let $\lambda_{1}=1$ and $\lambda_{2}=0.5$. We solve $\left(P-I \lambda_{1}\right) \mathbf{x}=\mathbf{0}$ to find a basis for the eigenspace corresponding to λ_{1}. We get

$$
\left[\begin{array}{cc}
-0.2 & 0.3 \\
0.2 & -0.3
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -3 / 2 \\
0 & 0
\end{array}\right]
$$

So $\left\{\mathbf{x}=\left[\begin{array}{c}3 / 2 \\ 1\end{array}\right]\right\}$ is a basis for the eigenspace. We let $\mathbf{q}=\frac{1}{5 / 2} \mathbf{x}=\left[\begin{array}{c}3 / 5 \\ 2 / 5\end{array}\right]$. This is the steady-state vector.

To find the explicit formula for \mathbf{x}_{i}, we need one eigenvector corresponding to each eigenvalue. For λ_{1}, we pick $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ (multiply \mathbf{q} by 5 to get rid of the fractions). For λ_{2}, we find that $\mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is an eigenvector (by solving $\left(P-I \lambda_{2}\right) \mathbf{x}=\mathbf{0}$).

The next ting we do, is to find real numbers A and B such that $\mathbf{x}_{0}=A \mathbf{u}_{1}+B \mathbf{u}_{2}$ (note that such numbers must exist; since \mathbf{u}_{1} and \mathbf{u}_{2} are linearly independent, they form a basis for \mathbb{R}^{2}). The augmented matrix of this equation is

$$
\left[\begin{array}{ccc}
3 & -1 & 0.4 \\
2 & 1 & 0.6
\end{array}\right]
$$

When solving this system, we get $A=B=\frac{1}{5}$.
Now, $\mathbf{x}_{1}=P \mathbf{x}_{0}=P\left(\frac{1}{5} \mathbf{u}_{1}+\frac{1}{5} \mathbf{u}_{2}\right)=\frac{1}{5} P \mathbf{u}_{1}+\frac{1}{5} P \mathbf{u}_{2}=\frac{1}{5} \lambda_{1} \mathbf{u}_{1}+\frac{1}{5} \lambda_{2} \mathbf{u}_{2}\left(\right.$ recall that $\left.P \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}\right)$.
Similarly, $\mathbf{x}_{2}=P \mathbf{x}_{1}=P\left(P \mathbf{x}_{0}\right)=P\left(\frac{1}{5} \lambda_{1} \mathbf{u}_{1}+\frac{1}{5} \lambda_{2} \mathbf{u}_{2}\right)=\frac{1}{5} \lambda_{1} P \mathbf{u}_{1}+\frac{1}{5} \lambda_{2} P \mathbf{u}_{2}=\frac{1}{5} \lambda_{1}^{2} \mathbf{u}_{1}+\frac{1}{5} \lambda_{2}^{2} \mathbf{u}_{2}$. Continuing this way, we get the formula

$$
\mathbf{x}_{i}=\frac{1}{5} \lambda_{1}^{i} \mathbf{u}_{1}+\frac{1}{5} \lambda_{2}^{i} \mathbf{u}_{2}=\frac{1}{5} 1^{i}\left[\begin{array}{l}
3 \\
2
\end{array}\right]+\frac{1}{5} 0.5^{i}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

for \mathbf{x}_{i}.

Problem 7 Find the solution of the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}+3 x_{2}+3 x_{3} \\
x_{2}^{\prime} & =-3 x_{1}-5 x_{2}-3 x_{3} \\
x_{3}^{\prime} & =3 x_{1}+3 x_{2}+x_{3}
\end{aligned}
$$

that satisfies $x_{1}(0)=1, x_{2}(0)=-1$ and $x_{3}(0)=2$.

Solution. The system can be written in matrix form like $\mathbf{x}^{\prime}=A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

We want to find a matrix P which diagonalizes A. We study the characteristic equation:

$$
\operatorname{det}(A-I \lambda)=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right]=-(\lambda-1)(\lambda+2)^{2}
$$

We find bases for the eigenspaces corresponding to $\lambda_{1}=1$ and $\lambda_{2}=-2$: For λ_{1}, we get that the eigenspace is spanned by $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$; and for λ_{2}, we get that the eigenspace is spanned by $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$. Hence, P is

$$
P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

We know that $P^{-1} A P=D$, where D is a diagonal matrix with the eigenvalues on the diagonal. Now we can return to our system of differential equations. We will use the substitution $\mathbf{x}=P \mathbf{y}$. Then we get

$$
\begin{aligned}
P \mathbf{y}^{\prime} & =A P \mathbf{y} \\
\mathbf{y}^{\prime} & =P^{-1} A P \mathbf{y}=D \mathbf{y}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] \mathbf{y} \\
\mathbf{y} & =\left[\begin{array}{c}
c_{1} e^{t} \\
c_{2} e^{-2 t} \\
c_{3} e^{-2 t}
\end{array}\right]
\end{aligned}
$$

This gives that

$$
\mathbf{x}=P \mathbf{y}=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} e^{t} \\
c_{2} e^{-2 t} \\
c_{3} e^{-2 t}
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{t}-c_{2} e^{-2 t}-c_{3} e^{-2 t} \\
-c_{1} e^{t}+c_{3} e^{-2 t} \\
c_{1} e^{t}+c_{2} e^{-2 t}
\end{array}\right]
$$

We have that $x_{1}(0)=1, x_{2}(0)=-1$ and $x_{3}(0)=2$. This gives the equations

$$
\begin{aligned}
c_{1}-c_{2}-c_{3} & =1 \\
-c_{1}+c_{3} & =-1 \\
c_{1}+c_{2} & =2
\end{aligned}
$$

Using Gauss-Jordan elimination, we get that $c_{1}=2, c_{2}=0$ and $c_{3}=1$. Thus,

$$
\begin{aligned}
& x_{1}(t)=2 e^{t}-e^{-2 t} \\
& x_{2}(t)=-2 e^{t}+e^{-2 t} \\
& x_{3}(t)=2 e^{t}
\end{aligned}
$$

is the solution satisfying the given initial conditions.
Problem 8 Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(1,3),(2,5),(4,7)$ and $(5,9)$.

Solution. We will solve the problem by solving the normal equations, but to find the normal equations, we need to express the problem in terms of a matrix equation. First, we form the design matrix

$$
X=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 5
\end{array}\right]
$$

and the observation vector

$$
\mathbf{y}=\left[\begin{array}{l}
3 \\
5 \\
7 \\
9
\end{array}\right]
$$

Now, we can express the problem as: Find the least-squares solution of $X \boldsymbol{\beta}=\mathbf{y}$. The normal equations are $X^{T} X \boldsymbol{\beta}=X^{T} \mathbf{y}$. We compute

$$
X^{T} X=\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right]
$$

and

$$
X^{T} \mathbf{y}=\left[\begin{array}{l}
24 \\
86
\end{array}\right]
$$

so the system we need to solve is

$$
\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
24 \\
86
\end{array}\right]
$$

The solution is

$$
\beta_{0}=\frac{18}{10} \quad \text { and } \quad \beta_{1}=\frac{14}{10}
$$

so the best-fitting line is $y=\frac{18}{10}+\frac{14}{10} x$.

