Problem 1 Find all solutions of the equation $z^{4}=\frac{-5+i \sqrt{3}}{2+i \sqrt{3}}$. Write your answer in Cartesian (normal) form with exact values, and draw the solutions in the complex plane.

Solution:

We begin by simplifying the given expression:

$$
\begin{aligned}
\frac{-5+i \sqrt{3}}{2+i \sqrt{3}} & =\frac{-5+i \sqrt{3}}{2+i \sqrt{3}} \bullet \frac{2-i \sqrt{3}}{2-i \sqrt{3}} \\
& =\frac{(-5+i \sqrt{3})(2-i \sqrt{3})}{(2+i \sqrt{3})(2-i \sqrt{3})} \\
& =\frac{-10+3+i \sqrt{3}(5+2)}{2^{2}+3} \\
& =\frac{-7+i 7 \sqrt{3}}{7} \\
& =-1+i \sqrt{3}
\end{aligned}
$$

To find the 4th roots of this, we write it in polar form.

$$
-1+i \sqrt{3}=2 e^{2 \pi i / 3} .
$$

Hence we have the following polar forms for z :

$$
\sqrt[4]{2} e^{\pi i / 6}, \quad \sqrt[4]{2} e^{2 \pi i / 3}, \quad \sqrt[4]{2} e^{7 \pi i / 6}, \quad \sqrt[4]{2} e^{5 \pi i / 3}
$$

These have the following Cartesian forms (using the fact that $\sqrt[4]{2} / 2=1 / \sqrt[4]{8}$):

$$
1 / \sqrt{8}(\sqrt{3}+i), \quad 1 / \sqrt{8}(-1+i \sqrt{3}), \quad 1 / \sqrt{8}(-\sqrt{3}-i), \quad 1 / \sqrt{8}(1-i \sqrt{3})
$$

And on the complex plane, these are as follows:

Problem 2

a) Find the general solution of $y^{\prime \prime}+y^{\prime}-2 y=0$.

Solution:

This is a homogeneous second order linear ODE with constant coefficients so it will have solutions of the form $e^{k t}$. To find out k, we substitute in to get:

$$
k^{2} e^{k t}+k e^{k t}-2 e^{k t}=0
$$

Dividing by $e^{k t}$ produces:

$$
k^{2}+k-2=0
$$

which has solutions $k=-2$ and $k=1$. Hence the general solution is of the form:

$$
A e^{-2 t}+B e^{t}
$$

b) Find the solution of $y^{\prime \prime}+y^{\prime}-2 y=10 \cos t+1-2 t^{2}$ with initial conditions $y(0)=11$, $y^{\prime}(0)=3$.

Solution:

Since we already have the general solution of the homogeneous equation, we look for a particular solution.

The right-hand side is a sum, so we split it into its pieces. The first is $10 \cos t$ so we guess a solution of the form $y(t)=A \cos t+B \sin t$. Substituting in, we get:

$$
\begin{aligned}
y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t) & =-A \cos t-B \sin t-A \sin t+B \cos t-2 A \cos t-2 B \sin t \\
& =(-3 A+B) \cos t+(-3 B-A) \sin t
\end{aligned}
$$

To get this equal to $10 \cos t$ we need $-3 A+B=10$ and $-3 B-A=0$. Thus $B=1$ and $A=-3$.
Now we consider the term $1-2 t^{2}$. For this, we guess a solution of the form $y(t)=A+B t+C t^{2}$. Substituting in, we get:

$$
\begin{aligned}
y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t) & =2 C+2 C t+B-2 A-2 B t-2 C t^{2} \\
& =(2 C+B-2 A)+(2 C-2 B) t+(-2 C) t^{2}
\end{aligned}
$$

To get this equal to $1-2 t^{2}$ we must have $C=1$, whence also $B=1$, and thus $A=1$. So our particular solution is:

$$
-3 \cos t+\sin t+1+t+t^{2}
$$

Our general solution is thus:

$$
y(t)=-3 \cos t+\sin t+1+t+t^{2}+A e^{-2 t}+B e^{t}
$$

At $t=0$, we get $y(0)=-3+1+A+B$ and $y^{\prime}(0)=1+1-2 A+B$. Thus we must find A and B such that:

$$
\begin{aligned}
-2+A+B & =11 \\
2-2 A+B & =3
\end{aligned}
$$

So $-3 A=-12$, whence $A=4$ and $B=9$. Thus the solution is:

$$
-3 \cos t+\sin t+1+t+t^{2}+4 e^{-2 t}+9 e^{t}
$$

Problem 3 Let

$$
A=\left[\begin{array}{rrrrr}
1 & -2 & 2 & -4 & 3 \\
-2 & 4 & 0 & -4 & -5 \\
4 & -8 & 3 & -1 & 7 \\
3 & -6 & 1 & 3 & 0
\end{array}\right]
$$

a) Find a basis for the column space, $\operatorname{Col}(A)$, and a basis for the null space, $\operatorname{Null}(A)$, of the matrix A.

Solution:

We row reduce A as follows. We do a full row reduction to get the simplest form for the rows since we will be working with them in the next part.

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & -2 & 2 & -4 & 3 \\
-2 & 4 & 0 & -4 & -5 \\
4 & -8 & 3 & -1 & 7 \\
3 & -6 & 1 & 3 & 0
\end{array}\right] \xrightarrow{\rho_{2}+2 \rho_{1}} \underset{\rho_{4}-3 \rho_{1} \rho_{1}}{\substack{\rho_{1}}}\left[\begin{array}{rrrrr}
1 & -2 & 2 & -4 & 3 \\
0 & 0 & 4 & -12 & 1 \\
0 & 0 & -5 & 15 & -5 \\
0 & 0 & -5 & 15 & -9
\end{array}\right]} \\
& \xrightarrow{\rho_{2} \leftrightarrow \rho_{3}}\left[\begin{array}{rrrrr}
1 & -2 & 2 & -4 & 3 \\
0 & 0 & -5 & 15 & -5 \\
0 & 0 & 4 & -12 & 1 \\
0 & 0 & -5 & 15 & -9
\end{array}\right] \\
& \xrightarrow{-\rho_{2} / 5}\left[\begin{array}{rrrrr}
1 & -2 & 2 & -4 & 3 \\
0 & 0 & 1 & -3 & 1 \\
0 & 0 & 4 & -12 & 1 \\
0 & 0 & -5 & 15 & -9
\end{array}\right] \\
& \xrightarrow[p_{1}-2 \rho_{2}]{\rho_{3}-4 \rho_{2}}\left[\begin{array}{rrrrr}
1 & -2 & 0 & 2 & 1 \\
0 & 0 & 1 & -3 & 1 \\
0 & 0 & 0 & 0 & -3 \\
0 & 0 & 0 & 0 & -4
\end{array}\right] \\
& \xrightarrow{-\rho_{3} / 3}\left[\begin{array}{rrrrr}
1 & -2 & 0 & 2 & 1 \\
0 & 0 & 1 & -3 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -4
\end{array}\right] \\
& \underset{\substack{\rho_{1}-\rho_{3} \\
\rho_{2}-\rho_{3}}}{\rho_{4}+4 \rho_{3}}\left[\begin{array}{rrrrr}
1 & -2 & 0 & 2 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

From this, we see that columns 1, 3, and 5 are pivot columns and thus a basis of $\operatorname{Col}(A)$ comes from the same columns in the original matrix:

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
4 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
3 \\
1
\end{array}\right],\left[\begin{array}{r}
3 \\
-5 \\
7 \\
0
\end{array}\right]\right\}
$$

Columns 2 and 4 are free and from them we get a basis of the null space by setting each free variable to 1 in turn.

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
0 \\
3 \\
1 \\
1 \\
0
\end{array}\right]\right\}
$$

b) Find an orthogonal basis for the row space of the matrix A.

Solution:

The row reduced form shows that the following is a basis of $\operatorname{Row}(A)$:

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
1 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

so we apply Gram-Schmidt to this family. Thus we start with $\vec{w}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 0 \\ 2 \\ 0\end{array}\right]$. We
compute $\vec{w}_{1} \bullet \vec{w}_{1}=9$. The next step is to replace $\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -3 \\ 0\end{array}\right]$ by:

$$
\left[\begin{array}{r}
0 \\
0 \\
1 \\
-3 \\
0
\end{array}\right]-\left(\frac{1}{9}\left[\begin{array}{r}
0 \\
0 \\
1 \\
-3 \\
0
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2 \\
0
\end{array}\right]\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{r}
2 / 3 \\
-4 / 3 \\
1 \\
-5 / 3 \\
0
\end{array}\right]\right.
$$

We can multiply by 3 since we only want an orthogonal basis. Thus we take
$\vec{w}_{2}=\left[\begin{array}{r}2 \\ -4 \\ 3 \\ -5 \\ 0\end{array}\right]$.

The last step is to consider $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. But this is already orthogonal to \vec{w}_{1} and \vec{w}_{2} so there is nothing to do here. Thus we have basis

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{r}
2 \\
-4 \\
3 \\
-5 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

This basis is not unique. Different starting points will produce different bases.
c) Let T be the linear transformation with matrix A. Is T one-to-one? Is it onto? Justify your answers.

Solution:

As A has a non-trivial null space, there is a non-zero vector \vec{w} such that $A \vec{w}=\overrightarrow{0}$. Hence T cannot be one-to-one.
The row reduced form of A has a row of zeros. Hence there is a vector \vec{b} such that $A \vec{x}=\vec{b}$ does not have a solution. Thus T cannot be onto.

Problem 4 Let P_{2} be the space of all polynomials of degree less than or equal to two. What is the dimension of P_{2} ?

Let $p_{1}(t)=t, p_{2}(t)=t(t-1)$, and $p_{3}(t)=(t-1)(t-2)$. Is $\left\{p_{1}, p_{2}, p_{3}\right\}$ a basis for P_{2} ? Justify your answer.

Solution:

Every polynomial of degree at most two is of the form:

$$
a_{0}+a_{1} t+a_{2} t^{2}=a_{0} 1+a_{1} t+a_{2} t^{2}
$$

for some $a_{0}, a_{1}, a_{2} \in \mathbb{R}$. This is the zero polynomial if and only if $a_{0}=a_{1}=a_{2}=0$. Hence we have a basis $\left\{1, t, t^{2}\right\}$ for P_{2} and thus $\operatorname{dim} P_{2}=3$.

In terms of the basis $\mathscr{B}:=\left\{1, t, t^{2}\right\}$, the given set of polynomials are:

$$
\begin{aligned}
& {\left[p_{1}(t)\right]_{\mathscr{B}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& {\left[p_{2}(t)\right]_{\mathscr{B}}=\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]} \\
& {\left[p_{3}(t)\right]_{\mathscr{B}}=\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right]}
\end{aligned}
$$

As there are three of them, and $\operatorname{dim} P_{2}=3$, they will form a basis if and only if they are linearly independent. We test this by row reducing the matrix of the corresponding column vectors.

$$
\begin{aligned}
{\left[\begin{array}{rrr}
0 & 0 & 2 \\
1 & -1 & -3 \\
0 & 1 & 1
\end{array}\right] } & \xrightarrow{\rho_{1} \leftrightarrow \rho_{2}}\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \\
& \xrightarrow{\rho_{2} \leftrightarrow \rho_{3}}\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

This has full rank, so its columns are linearly independent. Hence $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a basis for P_{3}.

Problem 5 In Sommerby the rental company has three locations for renting out boats: Market, Island, and Camping. The pattern of returns to the rental locations is the following: for boats rented at Market, one-quarter is returned to Market, one-half to Island, and onequarter to Camping; half of the boats rented at Island are returned to Market and half to Camping; for boats rented at Camping one-sixth are returned to Market, one-half to Island, and one-third to Camping. Find the stochastic matrix P that describes how the distribution of boats changes. Find the steady-state vector for P.

Solution:

The stochastic matrix is formed by listing the proportions that go from one place to another. We list the places in the order: Market, Island, Camping. The i, j-entry of the matrix P is then the proportion that goes from the j th location to the i th location.

Thus the matrix is:

$$
P:=\left[\begin{array}{ccc}
1 / 4 & 1 / 2 & 1 / 6 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 3
\end{array}\right]
$$

The steady-state vector is found by first looking for eigenvectors of P with eigenvalue 1. That is, we look for solutions of $P \vec{x}=\vec{x}$ or equivalently for the null space of $P-I$. Thus we row reduce $P-I$ as follows:

$$
\begin{aligned}
{\left[\begin{array}{rrr}
-3 / 4 & 1 / 2 & 1 / 6 \\
1 / 2 & -1 & 1 / 2 \\
1 / 4 & 1 / 2 & -2 / 3
\end{array}\right] } & \xrightarrow{\rho_{1} \leftrightarrow \rho_{3}}\left[\begin{array}{rrr}
1 / 4 & 1 / 2 & -2 / 3 \\
1 / 2 & -1 & 1 / 2 \\
-3 / 4 & 1 / 2 & 1 / 6
\end{array}\right] \\
& \xrightarrow[\rho_{3}+3 \rho_{1}]{\rho_{2}-2 \rho_{1}}\left[\begin{array}{rrr}
1 / 4 & 1 / 2 & -2 / 3 \\
0 & -2 & 11 / 6 \\
0 & 2 & -11 / 6
\end{array}\right]
\end{aligned}
$$

From this, we can read off that the null space is spanned by the vector:
$\left[\begin{array}{l}10 \\ 11 \\ 12\end{array}\right]$

This is not a state vector as it doesn't sum to 1 . Dividing by its sum, we get that the steady-state vector is:

$$
\frac{1}{33}\left[\begin{array}{l}
10 \\
11 \\
12
\end{array}\right]
$$

Problem 6 Find the solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+2 x_{2} \\
& x_{2}^{\prime}=3 x_{1}+2 x_{2}
\end{aligned}
$$

that satisfies the initial conditions $x_{1}(0)=1$ and $x_{2}(0)=1$.

Solution:

We start by writing this in matrix form as:

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \vec{x}(t)
$$

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$. We solve this problem by looking for eigenvectors and eigenvalues of A.

To find the eigenvalues, we consider the characteristic polynomial of $A, \operatorname{det}(A-\lambda I)$:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rr}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)-6=\lambda^{2}-3 \lambda-4
$$

This has roots 4 and -1 . These are thus the eigenvalues of A.
To find the eigenvectors, we look at the null spaces of $A-4 I$ and $A+I$.

$$
\begin{aligned}
{\left[\begin{array}{rr}
-3 & 2 \\
3 & -2
\end{array}\right] } & \mapsto\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
{\left[\begin{array}{lr}
2 & 2 \\
3 & 3
\end{array}\right] } & \mapsto\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Thus eigenvalues are $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
The general solution is thus:

$$
\vec{x}(t)=A e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+B e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

We need to fit this to the initial conditions. At $t=0$ we have:

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\vec{x}(0)=A\left[\begin{array}{l}
2 \\
3
\end{array}\right]+B\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

This has solution $A=2 / 5, B=-1 / 5$. Thus the solution of the ODE is:

$$
\vec{x}(t)=\frac{2}{5} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]-\frac{1}{5} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Written out in non-vector form, this is:

$$
\begin{aligned}
& x_{1}(t)=4 / 5 e^{4 t}+1 / 5 e^{-t} \\
& x_{2}(t)=6 / 5 e^{4 t}-1 / 5 e^{-t}
\end{aligned}
$$

Problem 7 Find the least squares line $y=m x+c$ that best fits the data points:

$$
\{(0,3),(1,3),(2,6),(3,-3),(4,1),(5,-1)\}
$$

Solution:

We write this in matrix form as follows:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1 \\
5 & 1
\end{array}\right]\left[\begin{array}{r}
m \\
c
\end{array}\right]=\left[\begin{array}{r}
3 \\
3 \\
6 \\
-3 \\
1 \\
-1
\end{array}\right]
$$

This does not have a solution so we look for a least-squares solution.
Setting A to be the matrix in the above and \vec{b} the vector on the right-hand side, we examine the linear system $A^{\top} A \vec{x}=A^{\top} \vec{b}$. This is:

$$
\left[\begin{array}{rr}
55 & 15 \\
15 & 6
\end{array}\right]\left[\begin{array}{c}
m \\
c
\end{array}\right]=\left[\begin{array}{l}
5 \\
9
\end{array}\right]
$$

To solve this, we row reduce the augmented matrix. One possible row reduction is as follows.

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
55 & 15 & 5 \\
15 & 6 & 9
\end{array}\right] } \xrightarrow{1 / 1 / \rho_{1}}\left[\begin{array}{rrr}
11 & 3 & 1 \\
5 & 2 & 3
\end{array}\right] \\
& \xrightarrow{\rho_{1}-2 \rho_{2}}\left[\begin{array}{rrr}
1 & -1 & -5 \\
5 & 2 & 3
\end{array}\right] \\
& \xrightarrow{\rho_{2}-5 \rho_{1}}\left[\begin{array}{rrr}
1 & -1 & -5 \\
0 & 7 & 28
\end{array}\right] \\
& \xrightarrow{1 / \rho_{2}}\left[\begin{array}{rrr}
1 & -1 & -5 \\
0 & 1 & 4
\end{array}\right] \\
& \rho_{1}+\rho_{2}
\end{aligned}\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 4
\end{array}\right]
$$

Thus the solution is $m=-1, c=4$ and so the least-squares line is $y=-x+4$.

