

Department of Mathematical Sciences

Examination paper for TMA4110 Matematikk 3

Academic contact during examination: Markus Szymik^a, Gereon Quick^b Phone: ^a41 11 67 93, ^b48 50 14 12

Examination date: 30 November 2015

Examination time (from-to): 09:00-13:00

Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR-270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling.

Language: English Number of pages: 3 Number pages enclosed: 0

Checked by:

Problem 1

- **a**) Find the polar coordinates of the complex numbers z satisfying $iz = \overline{z}$.
- **b)** Find all the solutions to $z^4 = (z-1)^4$.

Problem 2

Consider the equation

$$y'' + 4y = q(t).$$

- **a**) Find the general solution of the equation when q(t) = 0.
- **b)** Find the general solution of the equation when $q(t) = \cos 3t$.
- c) For $q(t) = e^{2t}$, find a solution satisfying the initial conditions $y(0) = \frac{1}{4}$ and $y'(0) = \frac{1}{2}$.

Problem 3

Let

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

Find a fundamental system of solutions for the system x' = Ax of first order differential equations.

Problem 4

Let z be a solution of $z^2 + z + 1 = 0$. Find a solution of the equation

$$\begin{bmatrix} 1 & 1 & 1 & 3\\ 1 & 1 & 1 & -1\\ 1 & z & z^2 & 0\\ 1 & z^2 & z & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} 9\\ 1\\ 0\\ 0 \end{bmatrix}.$$

Problem 5

Find the determinant and the inverse of the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix}.$$

Problem 6

Let

	[1]		[1]		[4]	
u =	2 ,	v =	2 ,	w =	-1	
	3		4		$\lfloor -1 \rfloor$	

Find a non-zero linear combination of u and v that is orthogonal to w.

Problem 7

Let A be the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$$

- **a)** Find a basis for the spaces Nul(A) and Col(A).
- **b**) Determine the eigenvalues and eigenvectors of A.
- c) Determine matrices P and D such that $A = PDP^{-1}$.

Problem 8

The team of FC Troll can either win, draw or lose a game in their league. Even though Askeladden is not a fan of that team, he had followed FC Troll's results very closely for a while. He observed that the results show the following pattern:

• If they won a game, there is a 50% chance that they win and a 30% chance that they lose the next game.

- If they lost a game, there is a 80% chance that they lose and a 20% chance that they win the next game.
- If the last game was a draw, there is a 40% chance that the next game is again a draw and a 30% chance that they lose the next game.

After not watching any game for a while, Askeladden goes again in the stadium of FC Troll. What is the most likely outcome of the game? Give the probabilities for observing the three possible outcomes.

Problem 9

Find the equation y = mx + c of the line that best fits the data points (0,1), (1,-2), (2,3) and (3,6).

Problem 10

Let A be an $n \times n$ matrix such that $A = A \cdot A$. Let $\{x_1, \ldots, x_k\}$ be a basis of Nul(A), and let $\{b_1, \ldots, b_l\}$ be a basis of Col(A). Show that $\{x_1, \ldots, x_k, b_1, \ldots, b_l\}$ is a basis of \mathbb{R}^n .