NTNU - Trondheim Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4110 Matematikk 3

Academic contact during examination: Markus Szymik ${ }^{\text {a }}$, Gereon Quick ${ }^{\text {b }}$
Phone: ${ }^{\text {a }} 41116793$, b 48501412

Examination date: 30 November 2015
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling.

Language: English
Number of pages: 3
Number pages enclosed: 0

Problem 1

a) Find the polar coordinates of the complex numbers z satisfying $i z=\bar{z}$.
b) Find all the solutions to $z^{4}=(z-1)^{4}$.

Problem 2

Consider the equation

$$
y^{\prime \prime}+4 y=q(t) .
$$

a) Find the general solution of the equation when $q(t)=0$.
b) Find the general solution of the equation when $q(t)=\cos 3 t$.
c) For $q(t)=e^{2 t}$, find a solution satisfying the initial conditions $y(0)=\frac{1}{4}$ and $y^{\prime}(0)=\frac{1}{2}$.

Problem 3

Let

$$
A=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Find a fundamental system of solutions for the system $x^{\prime}=A x$ of first order differential equations.

Problem 4

Let z be a solution of $z^{2}+z+1=0$. Find a solution of the equation

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
1 & 1 & 1 & -1 \\
1 & z & z^{2} & 0 \\
1 & z^{2} & z & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
9 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Problem 5

Find the determinant and the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 0 \\
3 & 3 & 3
\end{array}\right] .
$$

Problem 6

Let

$$
u=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right], \quad w=\left[\begin{array}{r}
4 \\
-1 \\
-1
\end{array}\right] .
$$

Find a non-zero linear combination of u and v that is orthogonal to w.

Problem 7

Let A be the matrix

$$
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] .
$$

a) Find a basis for the $\operatorname{spaces} \operatorname{Nul}(A)$ and $\operatorname{Col}(A)$.
b) Determine the eigenvalues and eigenvectors of A.
c) Determine matrices P and D such that $A=P D P^{-1}$.

Problem 8

The team of FC Troll can either win, draw or lose a game in their league. Even though Askeladden is not a fan of that team, he had followed FC Troll's results very closely for a while. He observed that the results show the following pattern:

- If they won a game, there is a 50% chance that they win and a 30% chance that they lose the next game.
- If they lost a game, there is a 80% chance that they lose and a 20% chance that they win the next game.
- If the last game was a draw, there is a 40% chance that the next game is again a draw and a 30% chance that they lose the next game.

After not watching any game for a while, Askeladden goes again in the stadium of FC Troll. What is the most likely outcome of the game? Give the probabilities for observing the three possible outcomes.

Problem 9

Find the equation $y=m x+c$ of the line that best fits the data points $(0,1),(1,-2),(2,3)$ and $(3,6)$.

Problem 10

Let A be an $n \times n$ matrix such that $A=A \cdot A$. Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis of $\operatorname{Nul}(A)$, and let $\left\{b_{1}, \ldots, b_{l}\right\}$ be a basis of $\operatorname{Col}(A)$. Show that $\left\{x_{1}, \ldots, x_{k}, b_{1}, \ldots, b_{l}\right\}$ is a basis of \mathbb{R}^{n}.

